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ABSTRACT 

IVe present, an efficient algorithm for computation of the 
maximum likelihood estimate of the location of a known tar- 
get, from short. pulse scatter data. The algorithm consitutes 
a three step procedure: (i) data filtering. (ii) time-domain 
backpropagation. and (iii) coherent. summation and consists 
of a number of projection and backprojection operations in- 
t,egrated in a tomographic scheme. .A computer simulation is 
included for illustration purposes and relevant. applications 
in radar target identification and buried object detection are 
discussed. 
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Scattering. ‘Tomographg, Radon Transform. Target. Recog- 
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1. INTRODUCTION 

In Inverse Scattering problems, an object. (scatterer) is probed 
with wave pulses in an attempt to est.imate (reconst,ruct) its 
structure from scattered radiation measurements [2]. In the 
present paper, We attempt to detect and class#y a known 
target. scatterer and estrmute its location from limit.cd and 
noisy space-tzme wave scatter data. The problem appears in 
application areas such as aut.omatic radar target recognition. 
buried object detection and classification. and underwaLer 
fish population classification. We show that. the maximum 
likelihood solution can be obtained via a comput,ationall! 
efficient. algorithm in which the space-time measurements 
arc first convolutionally filtered with the space-time target 
signature and subsequently tomographically backproject.ed. 

The: paper is organized as follows: Section 2 contains 
a review of the daLa measurement, configuration. the wave 
scattering equations, and frequency-domain and t.ime-domain 
plane-wave spectra of waves. Se&on 3 is concerned with 
location estimation algorithms and. after presentation of 
the frequency-domain solution, a time-domain filt.ered back- 
propagation algorithm is presented. Computer simulations 
arc included is Section 4. while Section 5 contains a sum- 
mary. a statement of conclusions. and a list. of possible re- 
search avenues to be followed in the future. 

2. CONFIGURATION AND SCATTERING 
EQUATIONS 

A. Frequency-Domnzn Theory 
Consider the data collection configuration in Fig. 1 in which 
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known short plane-wave pulses illuminate a non-dispersive 
scatt.ering object, characterized by t,he “object function” 
O(r)) and embedded in a dispersionless. non-at,tenuating 
homogeneous medium of wave ve1ocit.y co. Let, v?o(r.f) = 

p( 1. - &i r j be an incident plane-wave pulse propagating 

in the direction of the unit vector E: where p(.) is a short, 
pulse. The interaction of this pulse with the object res- 
ults in the formation of a scattered wave p&c: ~.‘(r. t) = 

& ,I:“, da ~-‘wt~(r. w) that is formally given as [5] 

V:(r.J) = 
s 

d”r’k20(r’)~~(r’.~)~(r,r’.~). (‘1 

In Eq.( 1): i(r’: ~1) is the temporal Fourier transform of the 
.klr-r’l 

(measurable) lotal wave pulse, C?(r. r’. U) = m IS the 

frequency-domain Green function to the u-ave equat,ion [;;I7 
and k = z is the wavenumber in the background medium 

at temporal frequency w. 
Consider now an object function of the form 

O(r:R,) = Oo(r - R,). (2) 

i.e., an object function 00 that has been shifted in space b?: 
a vector R,. It was shown in [6] that t.he pulse scastcred b! 
the object Oo(r - R,) is related t,o the pulse scat.t,ered b! 
t.ht-: (centered) object. O”(r) via: 

oz(r, w: R.,) = 

B. Time-Domnrn Plane. 

Consider a time-domain 
measured on the z = 0 
domain representation 

e tk”lLCt;?(r _ Rcqh,:O), 
(3) 

b’nue Spectra of n,‘uoefieid.s 

wavefield u(x.!) (x = T g +y i): 
plane. with equivalent frequency- 

s 
cc 

dt e’*‘u(x, t). (4) 
-co 

The frequency-domain plane-wave spectrum of the wavefield 
is defined as [5] 

5((. d) = 
s 

d’xe --‘kC.xG(X. &), 
(5) 



where I; = $ and < is a frequerlc:~-irldependerlt angular 

variable [.5], From Eq.( 5). one can obtain the frcquency- 
domain representation of the wavcfielci at an arbitrary point 

r = x + 2 P in space as 

from the: ar&ar spectrum expansion of the frequency-domain 
c:ausal (outgoing-wave) Green function to the Helmhol~z op 

erat,or [5] and clearly dccomposcs the wavefield G(r. L**) into 
a superposit.ion of propagating (corresponding to I[\ 5 1) 
and evanescent. (corresponding LO ItI > 1) plane waves. 

Eq.(S) has a time-domain equivalent, the time-domain 
plane-wave spectrum of the wavefield: 

z’/(E. 7) = & .s dti c -‘“‘&&s,. 
Substitut.ion of Eqs.(4) and (5) into Eq.(7) gives 

i? 

as the time-domain relation between t.he wavefield and its 
plane-wave spect.rum. Eq.(8,! is recognized as a Radon trans- 
form [l] of the wavefield ~J(x. t) in the three-dimensional 
space (x. t) and has. thus. been termed a slant.-stack trans- 
form [4]. Eq.(8) can be inverted t,o give t.he time-domain 
equivalent. of Eq.(Gj. The inversion formula that includes 
the evanescent, modes requires use of the analyLic signal (see 
[:{I for details). llere we will assume that the evanescent 
modes have been sufficiently at.tenuated 1.0 not c0ntribut.e 
to the inversion formula. 1”v.ith this in mind. the result is 

and can be recognized as a bank of inverse Radon trans- 
forms. each corresponding t.o a different z [lj. 

3. ESTIMATION OF OBJECT LOCATION 

/I. Data Model 
(‘:onsider a sc:ntt.erer ciescrihcd by the object. funcGon: 

O(r) = Oo(r - R,). (10) 

where 00 is a known function and R, is an unknown scat- 
t.crer location. The object is probed with short plane-wave 

pulses propagating in ttic direct.ion of unit vect.ors i, i.e.. 

plane-wave pulses of the form p;(t - % )’ ( and scattered 

pulse data are measured over planes perpendicular to the 

direction z. \%‘e assume the measurement (data) model 

y(r,.Aj = r.(rp.t)X.i:b(rp+I~,t:R.cj+n~(rp.tj 
h 6 

ill) 

rP E R’. -cc<t<cas.Pc in some set. of unit. vectors, 

‘The subscript ., is used to indicate that the form of the pulses 
ts 

may. in general. be different from experimenl to experiment. 

where r0 (rr,. t) is a convolutional space-t.ime measurement 

filter an: US (rp. t; R,) is the scattered field. Additionally. 
6 

n,(r,. t) is zero-mean Gaussian noise. whitc2 in the vari- 
K 

ables rP. t. and k. i.e. 

E{ nE(rP. r)rl,l (r;. t’)} = ni6(r, - rk)S(t - f’)6;.,:1. (12) 

The inverse problem is that. of estimating the unknown para- 

met.er (object location) R, from the measurements y(r,,! t, i 
) in Eq.(ll). 
H. L.ikelihood Function 
\*\~‘e define 

Q(rp,t.~Irr)=ro(rp!l)~~~~(r,,iI~.t;rr! j13j 
6 K 

t,o be the scat,tered pulse on the measurement, plane (filt,ered 
by the measurement filser) for the object located at rr and 

obLain an estimate g, of the unknown object location b! 
maximizing with respecr to a test. object location rc the 
likelihood function 

- fc lx dr/h rp la(rp, 1. L: rC)12. (14) 

: 
. --3o 

Next. we further simplify the expression for the log likeli- 
hood function and obtain an algorithm &at. can be efficientl! 
implemented on the computer. 

Theorem 1 If eoanescenf plane-wave spectra are ignored. 

the term $ cz s-“;, dt sd’ rPJo(rp. t.4; rci2 in tlw log like- 

lihood function in Eq.(lJ) ‘. . 24 constant wrth respecf to rc. 

Theorem 2 Ignorzng evanescent plane-slave spectra, the 

term & JrK dtJd2r,y(rp. t.l)u(r,. t,:; rc) ZR the loglike- 

lihood funchon tn Eq.(ld) is equal to 

drerc r, = rcP+ g .r,. 

Lq.(l5) can be interpreted as follows: For cacti pulse, 
the scattered pulse data are Radon-transformed with respect 
to their space-time c:oordinates: filtered in Radon space. and 
inverse Radon-transformed (one inverse Radon transform 

per value of /? .r,j into object space t.o form partial im- 
ages of the log likelihood function. The Radon-space filter 
consists of the complex conjugate of the time-domain plane- 
wave spectra of the field scattered by the: centered object 
00(r). Finally. the partial images are coherently superim- 

med. 
2 Gaussian noise of arbitrarv color can bc handled by expand- 

ing the algorithm of this sect;on to include a proper whitening 
filter. 



4. COMPUTER. ILLUSTRATION 6. REFERENCES 

For simulation purposes. we consider a single scattering ex- 
periment in a t,wo-dimensional geometry in which a target 
lies in the (x.2)plane and is infiniselx long and uniform 
along the: y-axis. The probing pulse is incident. from the 
direction of the positive z-axis and data are measured along 
t.he line (.I: c = I). The target. signature (scattered pulse 
&(r, 1) corresponding t,o the t,arget. located at the origin) is 
a pulse 
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plications. Wiley. New York, 1983. 
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fracting wavefields. Inoerse Problems. ??:161! 1986. 
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spectrum analysis of time-dependent radiation. J. EM 
T+hr?es Appl., 11:739-773. 1997. 

where ~7’ is t.he scatterer cross section and 

~[cos(Ot2)[l + 25’l*] - 11: if 0 < t < T 
dse. 

(17) 
Eq.(li) is t,he far field approximation to the field scat.t,ered 
by a point scatterer of cross section cr* when probed with 
an appropriate plane-wave pulse. The scattered field for ar- 
bitrarily located t.arget is subsequently generated according 
Lo Eq.(3). 

We assumed the scatterer to be located at. t.hc origin of 
t.he (x. 2 )-plane and chose the parameters a2 = 1. co = 1, 
3 = 1, T = I. and 1 = 5. For the additive Gaussian noise: we 
examined three different cases with corresponding variances 
0. 0.2S. and I. In Fig. 2. we show the scattered pulse at 
(T =o.,- = 5) for time 0 < t < 16 for the three noise levels. 
Finally. the likelihood f unctions computed via Eq.(lS) are 
shown in Figs. 3 for the three noise levels. 

5. SUMMARY: CONCLUSIONS. AND FUTURE 
WORK 

In this paper. we established that the log likelhood function 
for estimation of the location of a target object from nois: 
short. pulse scatt.er data can be computed via a time-domain. 
filtered backpropagat,ion algorithm consist,ing of a sequence 
of direct and inverse Radon transforms of the space-time 
measurements. Target. identification can also be performed 
via a similar algorithm. in which a bank is employed of fil- 
ters matched to various target. signatures. .A computer sim- 
ulation of a single scattering experiment. was performed to 
illust,rat,e the procedure. which revealed very high algorithm 
performance even in the case of very low signal-to-noise ra- 
tio. l’urther performance improvements can be achieved if 
multiple scattering experiments are ut.ilized. 

Related research issues to be addressed in the future in- 
clude ~hr derivation of proper location estimation algorithms 
for the cases of measurement planes that remain fixed from 
scattcring experiment to experiment. ‘fhis is the case in geo- 
physical surveys in which the sensor array is fixed in space 
and several scattering experiments are performed. each with 
a different. probing plane-wave pulse. Another avenue of fu- 
ture research seems to lead to the derivation of nonpara- 
metric algorithms for det.ection. locaLion estimation, and 
classification of stochastic scattering objects. This problem 
appears in several underwater surveys. This and relaLed re- 
search is currently pursued and its results will be announced 
shortly. 
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