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ABSTRACT

We present an efficient algorithm for computation of the
maximum likelihood estimate of the location of a known tar-
get from short pulse scatter data. The algorithm consitutes
a three step procedure: (i) data filtering. (ii) time-domain
backpropagation, and (iii) coherent summation and consists
of a number of projection and backprojection operations in-
tegrated in a tomographic scheme. A computer simulation is
included for illustration purposes and relevant applications
in radar target identification and buried object detection are
discussed.
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1. INTRODUCTION

In Inverse Scattering problems, an object (scatterer) is probed
with wave pulses in an attempt to estimate (reconstruct) its
structure from scattered radiation measurements [2]. In the
present paper, we attempt to detect and classify a known
target scatterer and estimate its location from limited and
noisy space-time wave scatter data. The problem appears in
application areas such as automatic radar target recognition,
buried object detection and classification, and underwater
fish population classification. We show that the maximum
likelihood solution can be obtained via a computationally
efficient algorithm in which the space-time measurements
are first convolutionally filtered with the space-time target
signature and subsequently tomographically backprojected.

The paper is organized as follows: Section 2 contains
a review of the data measurement configuration, the wave
scattering equations, and frequency-domain and time-domain
plane-wave spectra of waves. Section 3 is concerned with
location estimation algorithms and, after presentation of
the frequency-domain solution, a time-domain filtered back-
propagation algorithm is presented. Computer simulations
are included is Section 4. while Section 5 contains a sum-
mary, a statement of conclusions, and a list of possible re-
search avenues to be followed in the future.

2. CONFIGURATION AND SCATTERING

EQUATIONS

A. Frequency-Domain Theory
Consider the data collection configuration in Fig. 1 in which

F. Heyman

Dept. of Electrical Engineering
Tel-Aviv University

Tel-Aviv, 69978, ISRAEL

known short plane-wave pulses illuminate a non-dispersive
scattering object, characterized by the “object function™
O(r)) and embedded in a dispersionless, non-attenuating
homogeneous medium of wave velocity co. Let wo(r.t) =

p(t — %; - r) be an incident plane-wave pulse propagating

in the direction of the unit vector &, where p(-) is a short
pulse. The interaction of this pulse with the object res-

ults in the formation of a scattered wave pulse ¥*(r.t) =

1

5 ]j; dw e *“'9(r. w) that is formally given as [5]

u-;-f(r,-,..)=/d“r’k’z()(r’)&(r"w)(}(r,r’.w). (1)

In Eq.(1), (r’,w) is the temporal Fourier transform of the
) 2. . tkle—v/] .
(measurable) total wave pulse, G(r.r'.w) = ;—l—,l is the

T r—rf|
frequency-domain Green function to the wave equation [3],
and k = :—u is the wavenumber in the background medium
at temporal frequency w.

Consider now an object function of the form
O(r;Rc) = Op(r — Re). (2)

i.c., an object function Op that has been shifted in space by
a vector R¢. It was shown in [6] that the pulse scattered by
the object Op(r — Re) is related to the pulse scattered by
the (centered) object Og(r) via:

Jz"(r, w;Re) = eFrlte szs(r —Re,w:0). (3)

B. Time-Domain Plane- Wave Specira of Wavefields

<]
Consider a time-domain wavefield v(x.t) (x = « 7ty Y),
measured on the z = 0 plane, with equivalent frequency-
domain representation

-

The frequency-domain plane-wave spectrum of the wavefield
is defined as [5]

)

D(E.w) = /"2“"“"‘w<x.#), (3)



where k = £ and ¢ is a frequency-independent angular
L I ] r=1 (:“ ko Y | DR 2l r
variable [5]. From Eq.(5), one can obtain the frequency-

domain representation of the wavefield at an arbitrary point

z zk(5x+(z)"; . \
(5) J/ d VEw)  (6)

where ¢ = | VI=KEP.

wihlre

FIIST L6 is <
from the angular spectrum expansion of the frequency-domain
causal {outgoing-wave) Green function to the Helmholiz op-
erator [5] and clearly decomposes the wavefield ¢(r.w) into

ng (rnnpchnnrhnv to |F| < 1\

n nf nrnpnn"'
and evanescent, (rorrespondmg to |£] > 1) p]ane waves.

Eq.(53) has a time-domain equivalent, the time-domain
plane-wave spectrum of the wavefield:

—

Substitution of Egs.(4) and (5) into Eq.(7) gives

£ x

Co

v(€.7)

/dzxux7'+ ) (8)

as the time-domain relat,ion between the wavefield and its

um. Fn {RY1 1S rcf\)(rn;vnr‘ ac a Radon trans-

ve spectru gnized as a Radon trans
1 of Lhe wavefield w(x.t) in the three-dimensiona
space (x.t) and has, thus, been termed a slant-stack trans-
form [4]. Eq.(8) can be inverted to give the time-domain
equivalent of Eq.(6). The inversion formula that includes
the evanescent modes requires use of the analj gnal
73] for details). Here we will assume that the cvanescent
modes have been sufficiently at.tenuated to not contribute
to the inversion formula. With this in mind, the result is
b (r. 1) 1 f J4e o’ £ x+(z,
R AP o

ldlvbl\., wibual \acc

(9)
and can be recognized as a bank of inverse Radon trans-
forms. each corresponding to a different z [1j.

3. ESTIMATION OF OBJECT LOCATION
A. Data Model
Consider a scatterer described by the object function:
O(r) = Og(r — Re), (10)
where Oy i1s a known function and R. 1s an unknown scat-
terer location. The object is probed with short plane-wave
pulses propagating in the direction of unit vectors Ioi, e,

o
- 'f—(r)l and scattered

plane-wave pulses of the form p,(
e -
pulse data are measured over planes perpendicular to the

. - o r .
direction k. We assume the measurement (data) model

y(rp t.K) = rg(rp.t)@v};(rp+l»°;,t;Rc)+n°(rp,t)
(11)

. o .
rp € R?. —oc < t < 20.K in some set of unit vectors,

YThe subscript o is used to indicate that the form of the pulses
N K

may. in general, be different from experiment to experiment.

where ro(rp.t) is a convolutional space-time measurement
K
filter and ¢ (rp.t; Re) is the scattered field. Ad
K
no(rp.t) is zero-mean Gaussian noise. white’ in the vari-
»®

ditionally,

o .
ables rp. t. and &, i.e..

The inverse problem is that of estimating the unknown para-
meter (object location) R from the measurements y(rp, ¢, K
}in Eq.(11).
B. Likelihood Function
We define
o N
cr(rp,t,rc;r,._):ro(rp,l.)(xwo(rp-rl Jtire) (13)
®

to be the scattered pulse on the measurement plane (filtered
by the measurement filier) for the object located at r. and
obtain an estimate R, of the unknown object location by
maximizing with respect to a test object location r. the
likelihood function

Y / dt /d rpy(rp,t K ) (rp.t. K; PTe)

-—00

L(r.) =

1— %

[ , .
_ EL/ dr/ drpja(rp, trire) . (14)

Next, we further simplify the expression for the log likeli-
hood function and obtain an algorithm that can be efficiently
implemented on the computer.

eorem 1 If evanescen ! planc-wave spectra arc sanored
4 11U i1 1 ‘j CURItCOLL I IJ WItU - WU Jf/00LLTW Ui tificviILu.
o] o 2
the term £ 5, dt [ d®ry|la(rp.t.&;rcl? in the log like-
222 ) P P !
lihood function in Eq.{14) is constant with respect to re

Theorem 2 Ignoring evanescent plane-wave spectra, the
term Zi f_ofx dt [ d*rpy(rp.t, fcc)cv(rp, t,R;rc) in the log like-
lihood function in Eq.(14) is equal to

2
LS e Sgle a0 :
(15)

o
where re = rep+ K Tc.

LEq.(13) can be interpreted as follows: For cach pulse,
the scattered pulse data are Radon-transformed with respect
Lo their space-time coordinates, filtered in Radon space, and
inverse Radon—transformed (one inverse Radon transform

per value of P ‘re) into object space to form partial im-
ages of the log likelihood function. The Radon-space filter
consists of the complex conjugate of the time-domain plane-
wave spectra of the field scattered by the centered object
Op(r). Finally. the partial images are coherently superim-
posed.

2 Gaussian noise of arbitrary color can be handled by expand-
ing the algorithm of this section to include a proper whitening
CIA
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4. COMPUTER ILLUSTRATION

For simulation purposes. we consider a single scattering ex-
periment in a two-dimensional geometry in which a target
lies in the (z,z)-plane and is infinitely long and uniform
along the y-axis. The probing pulse is incident from the
direction of the positive z-axis and data are measured along
the line (r,z = I). The target signature (scattered pulse
Y5{r,t) corresponding to the target located at the origin) is
a pulse

— = r=(z,2). (16)

fo<t<T
0, clse.
(17)

Eq.(17) is the far field approximation to the field scattered
by a point scatterer of cross section o2 when probed with
an appropriate plane-wave pulse. The scattered field for ar-
bitrarily located target is subsequently generated according
to Eq.(3).

We assumed the scatterer to be located at the origin of
the (x,z)-plane and chose the parameters ¢ = 1. ¢o = 1,
3=1,T =1, and ! = 5. For the additive Gaussian noise, we
examined three different cases with corresponding variances
0, 0.25. and 1. In Fig. 2, we show the scattered pulse at
(r =0,z =5) for time 0 < t < 16 for the three noise levels.
Finally, the likelihood functions computed via Eq.(15) are
shown in Figs. 3 for the three noise levels.

5. SUMMARY, CONCLUSIONS, AND FUTURE
WORK

In this paper, we established that the log likelhood function
for estimation of the location of a target object from noisy
short pulse scatter data can be computed via a time-domain,
filtered backpropagation algorithm consisting of a sequence
of direct and inverse Radon transforms of the space-time
measurements. Target identification can also be performed
via a similar algorithm. in which a bank is employed of fil-
ters matched to various target signatures. A computer sim-
ulation of a single scattering experiment. was performed to
illustrate the procedure, which revealed very high algorithm
performance even in the case of very low signal-to-noise ra-
tio. Further performance improvements can be achieved if
multiple scattering cxperiments are utilized.

Related research issues to be addressed in the future in-
clude the derivation of proper location estimation algorithms
for the cases of measurement planes that remain fixed from
scattering experiment to experiment. This is the case in geo-
physical surveys in which the sensor array is fixed in space
and several scattering experiments are performed, each with
a different probing plane-wave pulsc. Another avenue of fu-
ture research seems to lead to the derivation of nonpara-
metric algorithms for detection, location estimation, and
classification of stochastic scattering objects. This problem
appears in several underwater surveys. This and related re-
search is currently pursued and its results will be announced
shortly.
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