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Abstract putational load numerical arithmetic such as a singular de- 
composition. 

A novel second-order statistics-based blind deconvolu- 
tion and equalizer technique is proposed in this literature. 
This technique makes use of a two-channel perfect recon- 
struction jilter bank derived from a two-component poly- 
phase decomposition of transmission channel in order to 
make exact system identifications possible. The proposed 
blind deconvolution algorithm is superior to conventional 
algorithms in view of simple structure and the uniqueness of 

solution. In order to verify the effectiveness of this method, 
several computer simulations including a 256 QAM signal 
equalizer and a blurred image recovery have been shown. 

1. INTRODUCTION 

The need for blind deconvolution arises in a number 
of important areas such as data transmission, reverberation 
cancellation, seismic deconvolution, and image restoration. 
Especially, a high-speed data transmission(e.g., ADSL us- 
ing 64-256QAM signals) over a communication channel re- 
lies on the use of blind adaptive equalization. We may iden- 
tify three broadly defined families of blind deconvolution 
and equalization algorithms, depending on the additional 
information that is used by the algorithm to make up for 
the unavailability of the channel input: 

In order to avoid these problems in conventional blind 
equalizers, we shall propose a novel blind deconvolution 
algorithm. The proposed blind equalizer makes use of a 
two-channel perfect reconstruction filter bank based on a 
two-component poly-phase decomposition of transmission 
channel. The proposed algorithm is derived from by solving 
a set of linear simultaneous equation so that we can obtain 
the unique impulse response of an unknown system. Fur- 
thermore, unlike conventional cyclostationary blind algo- 
rithms using a single-input multiple-output model(SIM0) 
of a channel, the proposed algorithm exploits a single-input 
double-output(SID0) model only and can attain an exact 
blind deconvolution. This results in simple structure, i.e., 
less computational complexity, compared with the conven- 
tional methods. 

1. Bussgang algorithm; Sato[ I], Godard[2] 

The organization of this paper is as follows. In Section II, 
the poly-phase based architecture for a blind deconvolution 
and equalization is derived. We then present a new blind de- 
convolution algorithm based on the poly-phase based archi- 
tecture in Section III. We also discuss on the blind equaliza- 
tion technique using second-order statistics. In Section IV, 
several computer simulations including a 256 QAM signal 
equalizer and a blurred image recovery have been shown in 
order to verify the effectiveness of this method. 

2. Tricepstrum-based or cumulant-based algorithms; [3] 2. ARCHITECTURE OF POLY-PHASE 
3. Cyclostationary statistics-based algorithm; [4] BLIND ADAPTIVE FILTERS 

The Bussgang and the tricepstrum-based algorithms rely 
on higher order statistics of the received signal in an im- 
plicit or explicit sense. This, in turn, requires the use of 
some form of nonlinearity. Therefore, the Bussgang algo- 
rithm suffers from the potential likelihood of being trapped 
in a local minimum w.r.t. a nonconvex cost function. The 
tricepstrum-based algorithm can be avoided the local min- 
imum problem; however, it requires a high computational 
complexity. In addition, a limitation common to both of 

these approaches is a slow rate of convergence. 

2.1. Poly-Phase Decomposition of a Channel 

The channel output of a communication system, e.g., 
quadratic-amplitude-modulation (QAM), can be described 
using the baseband representation as 

z(t) = 2 a(k)h(t - kT) + w(t) 
k=O 

(1) 

This slow rate convergence may be overcome by using 
the cyclostationary statistics-based algorithms. However, 
these methods face several difficulties: 1) Nonconvex op- 
timization. 2) Channel order determination, 3) High com- 

In this formulation, a sequence of data a(n), which is 
possibly complex, with symbol rate T is sent by the trans- 

mitter through a band-limited linear time invariant(LT1) 
channel with impulse response h(t) or transfer function 

H(s). The channel output may be corrupted by channel 



noise w(t); however, we assume throughout this paper that 
w(t) is negligible. 

Fig. l(a) shows a transmission channel model with a D- 
A converter in the transmitter and an A-D converter in the 

receiver. In here, we assume that the received signal y(n) 
is up-sampled with factor 2. Then H(s) can be modeled by 
the digital transfer function H(z) as shown in Fig.l(b). In 

this configuration, y(n) is divided into even numbered sam- 
ples ye(n) and odd numbered samples yl(n), respectively. 

Furthermore, since the transmitted signal are up- 
sampled. Fig.l(b) can be redrawn as shown in Fig.l(c) 

by using a two-component poly-phase decomposition w.r.t. 
H(z) and Noble identity[5]. HO(Z) and HI(Z) represent 
poly-phase components in terms of H(z), respectively. As 
a result, the sequence of sampled channel outputs becomes 
a SIDO model as follows. 

P--l 

zo(nT) = c a(k)ho(nT - IcT) (2 - u) 
k=O 

q-1 

21 (nT) = c a(k)hl(nT - kT) (2 - b) 
k=O 

where we assume H(Z) is a LTI-FIR system with p+q taps. 

2.2. Poly-Phase Based Blind Equalizer 

The poly-phase decomposition of a transmission channel 
provides a new architecture of a blind deconvolution and 
equalizer based on SIDO model as depicted in Fig.2. The 
blind equalizers Fa (2) and Fl (z) should attempt to recover 
the input data sequence a(n) from the measurable channel 
output ya(n) and y1 (n). In order to reach this our goal, the 
following theorem should be satisfied. 
Theorem1 : In Fig.2, a(n) can be recovered from z(n), 
when HO(Z) and HI(Z) have no common zeros, if and only 
if 

Ho(Z)Fo(%) +H1(t.)fi(z) = 1 (3) 

This is nothing but the perfect reconstruction condition 
of two-channel filter banks without rate conversions. 

This scheme can be also applicable in case that two dis- 
tinct blurred signals ye(n) and yl(n) with same inputs are 
simply available as shown in Fig.2. 

3. BLIND DECONVOLUTION ALGO- 
RITHM 

3.1. Blind System Identification 

Before applying Theorem 1 for a blind deconvolution, 
the poly-phase components both Ho(z) and HI(Z) should 
be identified in priori. In this chapter, we present an algo- 
rithm for blind system identifications by using second-order 

statistics in order to identify Ho(z) and HI(Z). 

In Fig.2, the cross-correlation function between ye(n) 

and y1 (n) can be given as follows. 

TYOYl CT) = E[yo(n)y1(n + T)] 
P--l q-1 

= E[C ho(k)u(n - k)x h(+(n + 7 - z)l 

k=O I=0 

p-l q-l 

= c c ho(k)hl(l)E[a(n - k)a(n + 7 - l)] 
k=O 1~0 

= ho(-7) *h(T) * &a(T) (4) 

where * denotes a convolution. 
We assume in here that z(n) is wide sense stationary 

(WSS) signal. Likewise, the auto-correlation function in 

terms of ya (n) is given by 

ryoyo(‘-) = E[Yo(~)Yo(~ + T)] 

= ho(-) * ho(T) * &a(T) (5) 

By cancelling out I&(T) from both Eq.(4) and (5), we 

get 

ho(n) * TYOYI (n) = h(n) *TYoYo (4 (6) 

We can rewrite Eq.(6) as 
P--l q--l 

ryoyl (n) = - C hO(kbyoyl (n - k) + C h(+-yoyo(n - 1) (7) 
k=l l=O 

where we assume that ho(O) = 1. 
By expressing Eq.(7) in the matrix form, WC get 

P=Rh (8) 

We then finally obtain h by taking a matrix inversion in 
Eq.(8) as 

h= R-‘P (9) 

where 

p = b-YOYI (0) TYOYl (1) * *. TYOYl (P + Q - 2r 

R = Pyow %ovol 

-ryoyl l-1) 

1 i 

-ryoyI t-2) 
-rYOYl(O) -rYoYl(-l) 

R YOYl = 

-ryoylb+4-3) -ryovl(p+t-44) 
. . . rYOYl t-p + ‘4 ryoyl (-P + 1) 
. . . rYOYl t-p + 3) rYOY, t-p + 2) 

. . . 
rYOYl 6 - 1) j 1 TYOYl (q - 2) 

TYOYO (0) 

i : 

TYOYO (-1) 

TYOYO (1) ryoyo (0) 

R YOYO = 

ryoyo b + q - 2) ryoyo (p 4 q - 3) 
. . . 

rYoYO(-4 + 2) rYoYo(-Q + 1) 

. . . ryoyo(-9 + 3) ryoyo(-q + 2) 1 
. . 

. . . 
rlloyo (P) ryoyo (P - 1) 1 



It should be noted that we do not need any statistical 
information in terms of input signal a(n) to identify the 
unknown impulse response h. This implies that we can 
achieve blind system identification by using Eq.(9). If it 

is necessary to reduce computational complexity in Eq.(9), 
we can apply the well-known matrix inversion lemma or re- 
cursive least square (RLS) algorithm. 

3.2. Poly-Phased Based Blind Deconvolution Algo- 
rithm 

We now summarize the proposed blind deconvolution al- 
gorithm. 

Step 1 : Identify h by Eq.(9) 

Step 2 : Substitute h into Eq.(3) and obtain Fa(-z) and 

fib) 
Step 3 : Deconvolve z(n) through the circuit depicted in 

Fig.2 to recover a(n) 

4. SIMULATION RESULTS 

In order to verify the effectiveness of the proposed 
blind deconvolution algorithm, several computer simula- 
tions shall be shown in this chapter. 

Experiment 1- 256QAM Signal Equulizution: 

We first consider the performance of the proposed equalizer 
in the case of 256QAM signal inputs a(n). The impulse 
response of channel is described by 

h(n) = [12 3 2 l] (10) 
The original binary data is band-limited by a raised-cosine 
filter with roll-off factor a = 0.4 . 

Fig.3 shows the received constellation and the equalized 
constellation for 1000 symbols. Clearly, the blind equalizer 
has opened the eye almost completely. 

We have also verified that even 256QAM signals can be 
equalized by using the proposed blind deconvolution algo- 
rithm. 

Experiment 2 - Blurred Image Recovery: 

In this experiment, we extend the proposed deconvolu- 
tion algorithm for 2-dimensional version and investigate its 
performance by blurred image recovery. Suppose two dis- 
tinct blurred images with a same original image are obtained 
as yc and yr as depicted in Fig.2. The transfer function of 
two channels are described by 

HO(Zl, z2) = 1 + 2t,l + 2%T2 + 2z,3 + $(I I) 

Hl(Zl,Z2) = 1+z;1+a,2+z,a+Z;4 (12) 
Fig.4 shows two blurred images and a dcconvo- 

luted(equalized) image. As expected, the proposed 
equalizer has worked well even for image recovery. 

5. CONCLUDING REMARKS AND FU- 
TURE WORK 

In this paper, a novel blind deconvolution algorithm 
based on second-order statistics has been proposed. The 
structure used in this algorithm has been derived from two- 

component poly-phase decomposition of channel. We have 

claimed here that it is possible to carry out blind deconvo- 

lution only by up-sampling with factor 2 of received sig- 
nals unlike conventional cyclostationary statistics-based or 

SIMO structure-based algorithms. Two computer simula- 
tions have been shown in order to verify the effectiveness 
of the proposed algorithm. 

The future work is to develop adaptive algorithms based 
on the proposed blind deconvolution scheme. 
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Figure 1. Ploy-phase decomposition of chan- 
nel 
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Figure 2. Poly-Phase based blind equalizer 
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(b) equalized x(n) 

Figure 3.256QAM constellation 
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(c) Recovered image x(n, ,n2 ) 

Figure 4. Image recovery 


