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ABSTRACT 

l l/ffl-type spectral behavior has ,received COI~SZ~PI.- 

able attention in. the past few yccrrs because it arlscs 
from a wide range of nature p1~~nomen.a.. In this paper 
we shnw that a l/f@ process that can be expressed as a 

di.s8-retazr,’ F .i..tion.al integral of white noise! follows an 
*-Sti!i;ic .r,ode/ if ,2 < !. while if a > I the process has 

statio,nary a-stable increments. We a.lso provide closed 
form expressions for /he relationshzp between :9 and 0. 

The theoretical results are l:eri$ed via real u1trasoun.d 

data. 

1. Introduction 

l/fP-type sp&ral beh;lvior abounds ill nat,ure. for 
example, in economic t,ime scrics. in biological I irne se- 
ries, in nature landscapes, in network traffic etc. ‘L’hcrc 
are inherent difficult& in developing appropriate mod- 
els for processes t.hat exhibit such spectral character- 
istics. As the long-range dcpe~ldence persists in l/J”’ 
processes, the widely used AR.MA model is not suit- 
able in this case. Some of r.he models tlcvc~lopetl in the 
past are the “superposition ol’ Lorenzian spectral” Irlod(,l 
[91. .. lnn,iite c ~nt.iriuous transmission line” motl(4 [IO]. 
and “‘Y~( ~YW~I ?;wvI~~~c mot.iotl” model [ll]. L\:avel(+ 
based models havcx also been thtvcloped to analyze: ;tt~cl 

synthesize a1)proximat.e 1 /J:’ behavior [7],[8] untlcr a. 
new frequency-domain I/f2 process tlclinition. All of 
the above models have provided insight into l/f” spec- 
tral behavior, there are still? however, difficulties in- 
volved when they are used in the synthesis and analysis 
of I/f3 data. 

Ebr p > 1, the spectrum is nonint,egrablc around ori- 
gin (often called the “infrared cat,astrophc”), wllich r(‘- 
fleets inherent, nonst.;Ll,iorlarit,y of t,he Ilndcrlying procc>sx. 
For 8 5 1, although 1 hc\ spect.rum is Ilonintc~gr;~l)l(~ in its 
tail, (often referrcxd IO its tht, 711 t.raviolct cat ast.roplic” ). 
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the underlying process is stationary. Bot.h. “fractional 
brownian mot ion” and .‘wavelet-based” models, by be- 
ing ba.sed on t hc assumption that. the underlying process 
has finite variance. can only appr0ximat.e a. true l/f” 
spectral bctiavior. 

The n-stable distribution (0 < cx < 2) is a heavy 
tailed dist,ribut,ion, and has been well known for ibs lack 
of second- and higher-order moment. The Gaussian dis- 
t.ribu t ion is a well known member of this family (N = 2). 
Many phenomena can be well described under the u’- 
stable distribution framework [a], [3]! [Lz], [5]. There 
have: Imn several empirical results in t,he literature link- 
ing l/f” sp(tct.ral to a-stable processes. The increments 
of cardiac. beat-to-btat intervals have been shown to ex- 
hil)it MI l/f” spect,ral behavior, and rurt.hcrmorc>, their 
hist,ogr;un is well described by a stable dist8ribution [lg]. 
‘1’11~ increments of infrared SCCIICS data, which exhibit, a 
l/S bcllavior, were also demonstrated to follow well an 
a-stable rnodcl [ 151, as opposed to the Gaussian model 
assumed by bhe traditionally used fractional Brownian 
mot ion rnodcl. 

In this paper we establish that a class of l/ fP process 
that, can be expressed as a discretized fractional integral 
of white noise follow an cx-st#able dist,ribution if ,3 5 I : 
while. if 13’ > I. its increments are a-stable distributed. 
We also provide the relationship between p and CY.. In 
[6] it was report,ed that the fractional integral of white 
noise is cr-st,ahl(>. It. is, however, the discretization of 
the fract.ional integral model that, gives rise to the rw- 
st ahlc result. Our theoret,ical developments are verified 
vi;L ultrasound rf-echoes t,hat appear to follow the 1 /J” 
model t.hat we consider here. 

2 Mathematical Background 

2.1 (r-stable Distributions 

St.aI)lc distribut.ions are the only class of distribu- 
l.ions t.llat can bc the limit distributions of sums of’ i.i.d 
rillldottl variables (Generalized central limit, theorem). 
Their density functSion does nob have a closed form, thus 



they are usually described by their charac.t.eristic func- 3 Relationship Between l/f@ Spectrum 
tion [2]: and a-Stable Distribution 

B(w) = ~5-{fxp(jwz)} (1) 
IIB<l 

ezp(jaw - rlwl”( 1 - jq tan ysign(w))) 0 # I I 
= (2) Let r(t) b e an l/fP process with ,/3 < 1. Discretizing 

1 ( ezp jaw - -flwl”( 1 - jq+lnlwlsign(w))) 0 = 1: 

where CY ~(0,2] is the charact.eristic, exponent,. 71 E[-1.11 
is the symmetry index, y >0 is t.he spread parameter, 
and a is the location parameter. A symmetric (r-stable 
SaS process is described by t,hc characteristic I’unct ion 
given in (l), where 77 = 0. 

the integral in (4) yields: 

x(t) = 2 UjG(i - Ij) (6) 
j=l 

a-stable processes (0 < ~1 < 2) have only finite mo- 
ments of order p, where -1 <p< Q. while their second- 
or higher-order moments are not, defined. Fractional- 
order moments, however, exist and their definitions can 
be.found in [2!. Similarly, for such process the covariance 
is not defined. Its fractional-order rquivalent, the covari- 
ation is defined (only for st.able processes with cx > 1) 
and its definition can bc found in [a]. 

where ~j E [-T: T] ( uni orm i.i.d), 2oj (i.i.d) are, respec- f 
tively, t;he location and the magnitude of the j-th pulse, 
and tj and Il!j arc independent with each other. Then 
the characteristic function of x(t) is 

2.2 l/ffi-type spectrum 

The underlying process of an l/f/‘-type spect8runl. 
i.e., cc(t), can be formulat,ed in the sc.enario of fractional 
calculus [I3]. In bhat sense, white noise, w(l). is the 
P-order fractional derivative of r(t). i.e.:: 

$x(f) = w(t)! (3) 

where ,fi is a real number, normally between 0 and 2. 
Based on (3), x(t) can be obtained via the Ricmann- 
Liouville fractional integral [ 131: 

1 
x:(t) = 7 

r(p/a) (L--1) I 
’ 3/L’-’ 7/!(/‘)&‘! (4) 

0 

where r(.) is the Gamma fun&on. l+om (4): z(1) C;LII 
be viewed as the output of a linear tirnc-invariant systcrn 
excited by white noise: whose impulse> response is: 

t/3/2- I 

G(t) = ~ 
q :3/2) T4t)7 

(5) 

where u(t) is the unit step I’trnction. ‘J.‘hc l,npla.ce trans- 
form of G(t) equals l/s @I’. t,hus the powvcr spectrum 
of x(t) is l/f3i2. It should t)(, not,ed that, for 0 < 2. 
G(0) is not finite, which resu1t.s in infinit.e variance in 
the underlying process. This will cause: a problem whcr~ 
this linear filtering model is used in synthesizing l/f” 
data. The fractional brownian motion model bypasses 
this problem [ll] by having finit.e variance. As a rc- 
sult, however, it can only approxilnate l/f4 behavior. 
Since we are not going to use (4) in synthesizing I/f” 
processes, but rather in deriving t#he stat,istics of such a 
process. the model of (4) will serve o11r purpose. 

L-T-m 

= 
T 03 ,A- 

SSr 
ejwG(t--t’) _ 1 1 f (w)dwdt’ 

-T--o3 1 
(7) 

Let N 4 CO, T + CO, while keeping m = 
N/2T constant. Taking into account the limit formula 
limT-co(I + +) = es, (7), yields : 

a=(p) = ezcp), (8) 

where 

i’;(p) = m 7 f(w)dw 7 [ejp”‘G(t-t’) - l] dt’. (9) 

-co --oc 

Substitut,ing in (8) G(t - t’) with 

G(t - t’) = 
0, 2’ > t 

It-tyl 1 t, < t (10) 
l‘(X) 9 

where X = ,8/2. yields: 

+ mTf(w)dw 1 [ejpw%F - l] dt’(.ll) 

0 -co 



Changing the variable of intergation t.o s = 6(! - 

t’)‘-’ in (1 l), yields : 

where 
I 2 

&=l-= W’ 

Evaluating the integrals in (12) yields [14]: 

(13) 

Z(p) = c. q r--C!) cos 7 ./P 
( > 

+jc r r(-0) sill (y) IplQsign(p) 

= c q q-0) cos( 7) /P 

(fov 0 # l), 

( 14) 

where 

(13) 

(1 IX 
I 

[f( -7r) + J’(w)] ~ll’adu’, (16) 

0 
cm 

r = 
I 

[f(w) - J( -(I:)] waclui. 

0 

By comparing (14) with (2) one can see that, x(t) fol- 
lows an cr-stable distribut,ion. with dispersion equal to 
c q T(--a) . cos( ";i") p". symmcxl ry in&x --T/Q. and 

location parameter 0. 

If 1 < ,$ < 3 the und(>rlyillg proc.ess ~(1) is no11- 

stationary. This can be SWII t)y viewing this process 

as the integration of the stationary l/f” process, x’(t), 
with 17’ = D - 2 < 1 [7], i.e., 

t 
x(1) = I x’(t). (17) 

As t increases, the dispersion of x(t) diverges. Since the 
spectral exponent of x'(t) equals ,$ - 2, the increment 
process x'(t) falls under case (I), thus is a-stable. 

4 Simulation results 

Our theoretical results are justified by studying ul- 
trasound breast, data. The ultrasound rf echo follows 
t.he model [12]: 

x(t) = w(t) * h(f) + n(f), (18) 

where w(t) is a random process that models the tis- 
sue response; h(t) is a deterministic kernel that models 
t,he ultrasonic system response (transducer and attenua- 
tion); and n(t) is noise or modeling error. The ultrasonic 
system in the frequency domain is a bell shaped function 
which peaks at the transducer center frequency. 

The data used in this section are breast images, and 
were obtained using a flat linear array transducer with 
a. nominal cent,er frequency of 7.5 MHz, on a clinical 
imaging system UltraMark- HDI Advanced Technol- 
ogy Laboratories. The sampling rak of the data was 

20 MHz. Based on line segments of 250 samples. taken 
along the axial direction, the power spectrum was esti- 
[nated. In a loglog plot of the power spect.rurn of’ vari- 
ous segmenls, it can be seen that, in the low-frequency 
range, successive segments of the ultrasound echo ex- 
hibit a l/f4 trend, with 8 changing bebween segments 
(see Fig. 1). ‘l’i IIN, at low frequencies, where the spec- 
t ral contribution of transducer is almost flat, the rf echo 
spectrum exhibits a clear l/f” behavior. Based on (18), 
t,his lncans that w(t) is l/fP. The tissue response is 
widely modeled as a Poisson process. Thus. the tissue 
response echo is consistent with the model of (6). Ac- 
cording to the main result of this paper, depending on /?: 
w(t): or its increments, should be a-stable distributed. 
If the noise t,crm in (18) can be ignored, the filtered w(t), 
i.e., r(t). or its increments, will also be a-stable. The 
parameter o will be the same as in w(t), since linear fil- 
lering does not change Q. From the same segments over 
which the l/f” trend was validated! the a-stable model 
was tesded using the method of [15]. Fig. 2 shows the 
loglog plot, of the characteristic function versus w (seo 
(a))? whose slope provides an estimate for CX. 

‘I‘he almost perfect lines of Fig. 2 confirm that the 
corresponding data follows the a-stable model. ‘I’he ex- 
pect,ed ct would bc o = & if x(t) is l/f” wit.h ,/3 < 1, 

or c-u = & for 1,he increment of z(t) if x(t) is l/f” 



with p > 1. In the casts includctl in Fig. 2! thcrc 
is good agreement between t.hc: expected ct paramet.er 
and estimated one. The dif[i~rences, which can be somo- 
times observed het,ween est.irnated and expected a. can 
be attributed to the noise trrrn n(t). or errors in the 
estimation of 0 clue to t,he short data rcxcoi-ds used. 
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Figure 1. Low frequency part of ultra- 

sound power spectrum, estimated from 

various windows of lenth 256 samples 

along the axial direction. 
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Figure 2. Estimation of N from the same 

windows used in Fig. 1. 


