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ABSTRACT

1 1/ fP-type spectral behavior has received consider-
able attenlion in the past few ycars because it arises
from a wide range of nature phenomena. In 1his paper
we show that a 1/fP process thal can be expressed as a
discretized F . tional integral of while nowse, follows an
a-stable a.odel if 3 < 1. while if 3 > 1 the process has
stationary a-stable increments. We also provide closed
form expressions for the relationship between 3 and o.
The theoretical results are verified via real ultrasound
dala.

1. Introduction

1/fP-type spectral behavior abounds in nature, for
example, in economic time scrics, in biological time se-
ries, in nature landscapes, in nctwork traffic etc. There
are inherent difficulties in developing appropriate mod-
els for processes that exhibit such spectral character-
istics. As the long-range dependence persists in 1/f?
processes, the widely used ARMA model is not suit-
able in this case. Some of the models developed in the
past are the “superposition of Lorenzian spectra™ model
[9'. “innaite ~ontinuous transmission line” model [10].
and “fractonal hrownian motion” model [11]. Wavelel-
based models have also been developed to analyze and
synthesize approximate 1/f° behavior [7],[8] under a
new frequency-domain 1/f” process definition. All of
the above models have provided insight into 1/f° spec-
tral behavior, there are still, however, difficulties in-
volved when they are used in the synthesis and analysis
of 1/f7 data.

For 8 > 1, the spectrum is nonintegrable around ori-
gin (often called the “infrared catastrophe™), which re-
flects inherent nonstationarity of the underlying process.
For 8 < 1, although the spectrum is nonintegrable in its
tail, (often referred Lo as the “ultraviolet catastrophe™).
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the underlying process is stationary. Both, “fractional
brownian motion” and “wavelet-based” models, by be-
ing based on the assumption that the underlying process
has finite variance. can only approximate a true 1/f°
spectral bechavior.

The a-stable distribution (0 < « < 2) is a heavy
tailed distribution, and has been well known for its lack
of second- and higher-order moment. The Gaussian dis-
tribution is a well known member of this family (o = 2).
Many phenomena can be well described under the o-
stable distribution framework [2], [3], [4], [6]. There
have been several empirical results in the literature link-
ing 1/ f? spectral to a-stable processes. The increments
of cardiac beat-to-beat intervals have been shown to ex-
hibit an 1/f# spectral behavior, and furthermore, their
histogram is well described by a stable distribution [16].
The increments of infrared scenes data, which exhibit a
1/f behavior, were also demonstrated to follow well an
a-stable model [15], as opposed to the Gaussian model
assumed by the traditionally used fractional Brownian
motion model.

In this paper we establish that a class of 1/f# process
that can be expressed as a discretized fractional integral
of white noise follow an a—stable distribution if 3 < 1,
while. if # > 1. its increments are a—stable distributed.
We also provide the relationship between 8 and a. In
[6] it was reported that the fractional integral of white
noise is a—stable. It is, however, the discretization of
the fractional integral model that gives rise to the a-
stable result. Our theoretical developments are verified
via ultrasound rf-echoes that appear to follow the 1/f?
model that we consider here.

2 Mathematical Background
2.1 o-Stable Distributions

Stable distributions are the only class of distribu-
tions that can be the lirit distributions of sums of i.i.d
random variables (Generalized central limit theorem).
Their density function does not have a closed form, thus



they are usually described by their characteristic funec-
tion [2]:
B(w) = L{eap(jus)) (1)
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where o €(0,2] is the characteristic exponent. 1 €[-1.1]
is the symmetry index, v >0 is the sprcad parameter,
and a is the location parameter. A symmetric «-stable
SaS process is described by the characteristic function
given in (1), where n = 0.

a-stable processes (0 < & < 2) have only finite mo-
ments of order p, where —1 <p< «, while their second-
or higher-order moments are not defined. Fractional-
order moments, however, exist and their definitions can
be found in [2]. Similarly, for such process the covariance
is not defined. Its fractional-order cquivalent, the covari-
ation is defined (only for stable processes with o > 1)
and its definition can be found in [2].

2.2 1/ff-type spectrum

The underlying process of an 1/fP-iype spectrum,
i.e., z(t), can be formulated in the scenario of fractional
calculus [13]. In that sense, white noise, w(¢). is the
B-order fractional derivative of «(t), i.e.,:

d? .
at—ﬁz’(l‘) = w(t), (3)

where 8 is a real number, normally between 0 and 2.
Based on (3), z(t) can be obtained via the Riemann-
Liouville fractional integral [13]:
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where T(-) is the Gamma function. From (4), (t) can
be viewed as the output of a linear time-invariant system
excited by white noise, whose impulsc response is:
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where u(t) is the unit step function. The Laplace trans-
form of G(t) equals 1/5'6/“. thus the power spectrum
of :c(t) is 1/f8/2. 1t should be noted that for 8 < 2.
G(0) is not finite, which results in infinite variance in
the underlying process. This will cause a problem when
this linear filtering model is used in synthesizing 1/f*
data. The fractional brownian motion model bypasses
this problem [11] by having finite variance. As a re-
sult, however, it can only approximate 1/f? behavior.
Since we are not going to use (4) in synthesizing 1/
processes, but rather in deriving the statistics of such a
process, the model of (4) will serve our purpose.

Y (1')dt, (4)

G(t) = u(t), (3)

3 Relationship Between 1/f? Spectrum
and «-Stable Distribution

o<1

Let x(¢) be an 1/f? process with 3 < 1. Discretizing
the integral in (4) yields:

N
z(t) = wG(t —t;) (6)

i=t
where {; € [-T,T] (uniformi.i.d), w; (i.i.d) are, respec-
tively, the location and the magnitude of the j-th pulse,
and t; and w; arc independent with each other. Then
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Let N — oo, T — o0, while keeping m =
N/2T constant. Taking into account the limit formula
limr_oo(14 %) =€, (7), yields :

®;(p) = €717, (8)

where

Z(p) =m / f(w)duw ] [rst-t 1] ar. (9)

Substituting in (8) G(t —t') with

, 0, !>t
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Changing the variable of intergation to s = |‘(/\)(t —
tH2=1in (11), yields :
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Evaluating the integrals in (12) yields [14]:
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By comparing (14) with (2) one can see that z(t) fol-
lows an a-stable distribution, with dispersion equal to
¢ q-T(~a) - cos(&F) - p*. symmetry index —r/q. and
location parameter 0.

M)t<622

If 1 < 8 < 3 the underlying process z(t) is non-
stationary. This can be scen by viewing this process

as the integration of the stationary 1/f%" process, z'(t),
with 3 = 8—-2<1[7],ie,

z(t) = /:c'(t). (17)

As t increases, the dispersion of z(t) diverges. Since the
spectral exponent of z'(t) equals § — 2, the increment
process z’(t) falls under case (1), thus is a-stable.

4 Simulation results

Our theoretical results are justified by studying ul-
trasound breast data. The ultrasound rf echo follows
the model [12]:

z(t) = w(t) x h(t) + n(t), (18)

where w(t) is a random process that models the tis-
sue response; h(¢) is a deterministic kernel that models
the ultrasonic system response (transducer and attenua-
tion); and n(t) is noise or modeling error. The ultrasonic
system in the frequency domain is a bell shaped function
which peaks at the transducer center frequency.

The data used in this section are breast images, and
were obtained using a flat linear array transducer with
a nominal center frequency of 7.5 MHz, on a clinical
imaging system UltraMark-9 HDI Advanced Technol-
ogy Laboratories. The sampling rate of the data was
20 MHz. Based on line segments of 250 samples, taken
along the axial direction, the power spectrum was esti-
mated. In a loglog plot of the power spectrum of vari-
ous segments, it can be seen that, in the low-frequency
range, successive segments of the ultrasound echo ex-
hibit a 1/f? trend, with 3 changing between segments
(see Fig. 1). Thus, at low frequencies, where the spec-
tral contribution of transducer is almost flat, the rf echo
spectrum exhibits a clear 1/f? behavior. Based on (18),
this means that w(t) is 1/f#. The tissue response is
widely modeled as a Poisson process. Thus. the tissue
response echo is consistent with the model of (6). Ac-
cording to the main result of this paper, depending on 3,
w(t), or its increments, should be a-stable distributed.
If the noisc term in (18) can be ignored, the filtered w(t),
i.e., z(t), or its increments, will also be a-stable. The
parameter o will be the same as in w(t), since linear fil-
tering does not change . From the same segments over
which the 1/f# trend was validated, the a-stable model
was tested using the method of [15]. Fig. 2 shows the
loglog plot of the characteristic function versus w (sec
(2)). whose slope provides an estimate for .

The almost perfect lines of Fig. 2 confirm that the
corresponding data follows the a-stable model. The ex-
pected a would be o = ﬁ if 2(t) is 1/F% with 8 < 1,

or a = 735 for the increment of () if (1) is 1/f#



with # > 1. In the cases included in Fig. 2, there
is good agreement between the expected a parameter
and estimated one. The differences, which can be some-
times observed between estimated and expected a, can
be attributed to the noise term n(t). or errors in the
estimation of a due to the short data records used.
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Figure 1. Low frequency part of ultra-
sound power spectrum, estimated from
various windows of lenth 256 samples
along the axial direction.
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Figure 2. Estimation of a from the same
windows used in Fig. 1.



