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ABSTRACT 

We consider translating natural language sen- 

tences into a formal language using direct trans- 
lation models built automatically from training 
data. Direct translation models have three com- 

ponents: an arbitrary prior conditional probabil- 
ity distribution, features that capture correlations 
between automatically determined key phrases or 

sets of words in both languages, and weights as- 

sociated with these features. The features and 

the weights are selected using a training corpus 
of matched pairs of source and target language 
sentences to maximize the entropy or a new dis- 
crimination measure of the resulting conditional 

probability model. We report results in Air Travel 
Information System (ATIS) domain and compare 
the two methods of training. 

1. INTRODUCTION 

The crux of an automatic translation task is to 

capture correlations between groups of words in 

one language and groups of words in the other. 

Better translation performance can be expected 
when the words in these groups are not forced to 
be contiguous. Our interest is in developing a sta- 

tistical translation system that is fully data-driven 

and can be built automatically from the training 

data. 

For this paper, the source language is a natural 

language in a restricted domain and the target lan- 

guage is an artificial (formal) language. Such situ- 

ations arise in building natural language interfaces 

to applications such as email and data-bases. The 

formal language expresses operations that the tar- 
get applications can perform. 

We apply our techniques to Air Travel Informa- 

tion System (ATIS) domain. Here we translate 

English queries on air travel information into a 
formal language that can then be translated de- 

terministically into a database query. The data 
for ATIS was collected in an ARPA-sponsored pro- 

gram [3]. 
The starting point for building a model is several 

thousands of English queries and their man-made 
formal language translations. These pairs of Eng- 

lish and formal sentences form the training corpus. 
Some examples from the training corpus follow: 

Sr: show me all nonstop flights from airport-l to 
city-l leaving airport-l before time-l on day-l . 

T,: LIST FLIGHTS NONSTOP DEPARTING BE- 

FORE TIME-1 FLYING-ON DAY-1 FROM:AIRPORT 

AIRPORT-1 TO:CITY CITY-1 

Sa: what are the available flights on air-l from 
city-l to city-2 the evening of date-l . 

T,: LIST FLIGHTS AIR-1 EVENING FLYING-ON 

DATE-1 FROM:CITY CITY-1 TO:CITY CITY-2 

Statistical translation models are used to trans- 

late a new (unseen in the training corpus) source 

sentence S in the following natural way: Evalu- 

ate conditional probability P(TJS) for all T in the 

target language space and select the best scoring 

T as the translation. Parameters of these models 

are “trained” from the training corpus. 

Brown, et al [l] introduced statistical transla- 

tion models in the context of French to English 
translation. These models are based on the famil- 

iar source-channel paradigm that uses two compo- 

nent models: 1. P(SIT) called the channel model, 
and 2. P(T) called the language model (or source 

model). Since P(T)S) = P(SjT)P(T)/P(S), 
we choose the T that maximizes the product 



P(SIT)P(T) as the translation of S. The chan- 

nel model can also be thought of a translation 
model, but in the wrong direction (from target to 

source). As in speech recognition task, the lan- 

guage model is built separately without regard to 

its end-purpose (translation task). 

In the channel model, roughly speaking, the tar- 
get sentence words can be seen as states in an 
HMlM and source sentence words can be seen as 

observation vector. Being a generative model, the 

channel model allows only one target language 
word to be associated with a contiguous group of 

source language words, but not vice versa. That 
is, the source-channel model is constrained to gen- 
erate one group of English words for each Formal 
word, as below. 

show me the flights from city1 to city2 

vfz~7v’c~ 
LIST FLIGHTS FROM:CITY CITY I TO:CITY CITY2 

However, the central task in translation is to de- 
termine correlations between groups of words in 

one language and groups of words in the other. 

An example of such a general correlation is below. 

what airlines fly from city1 early day1 morning 

LIST AIRLINES SERVING FLlCliTS EARLY-MORNING FLYIX-ON NY, FROII:CIT1 CITY1 

The source-channel model fails in capturing such 

general correlations. 

2. GOODNESS OF A MODEL 

We consider two objective functions of any prob- 

abilistic model P(TIS): One is the familiar log- 
likelihood on training data, given by 

h,f 

where j is the empirical distribution. The second 
is a measure of model’s discrimination described 

below. 

Let the model’s best guess of future f,,(h) be 

a% mfax WI4 

where the maximum is taken over an a priori fixed 

finite set of futures. 

Suppose we are given a collection of training 

pairs (hi,f,), i = l,... ,T. Treating training data 

as truth, we ideally want a model P such that 

fP(h;) = fi for each i. A measure of goodness of 

the model P is the discrimination defined by 

D(P) := Clog 
P(filhi) 

i=l J’(i+i)lhi)’ 

This can be compared to the loss function in [2] 

with 71 -+ oo and without the smoothing. The 
motivation for the current measure is as follows. 

When the model incorrectly predicts the future, 
there is a penalty that is proportional to how far 

away truth is to prediction. The ratio is smaller 
than 1 and hence the cost function is-negative. A 
variation of the measure is obtained by measur- 
ing how far away truth is to the best guess or to 
the nearest competitor when best guess is indeed 
the truth. From a theoritical point of view, this 

variation is inessential. 

3. THE DIRECT TRANSLATION MODEL 

As in [5], here we use a powerful alternative to the 

source-channel model for translation: we build a 
direct model of the a posteriori conditional distri- 

bution P(TIS). The direct translation model has 

three components: features that capture transla- 
tion effects and language model effects in a uni- 

fied framework, weights associated with the fea- 
tures, and a prior conditional probability distri- 

bution P,(TJS). The p rior could be uniform, or 

could be derived from a decision tree, or any arbi- 
trary probabilistic model. The model can be seen 

as a correction to the prior relative to feature func- 
tions. We consider a variety of features involving 

phrases, set of words, parses, and long-distance 

relations in the source and target sentences. 
The selection of features and weights is fully 

data-driven and can incorporate a variety of ob- 
jective functions. Feature selection and training 

with respect to log-likelihood of training data was 

described in [5]. 

3.1. Features 

For simplicity, we consider only binary-valued fea- 

ture functions here. So a feature maps the product 
set of source and target language sentences to 0 or 

1. Some concrete examples of features that we con- 

sidered follow. First consider some sample English 



and Formal sentences. The formal sentences are 
not translations of the English sentences. 

El: what are least expensive flights from city-l to 

city-2. 

E2: what flights do you have from city-l to city-2. 

F,: LIST FLIGHTS MORNING EARLIEST-ARRIVING 

FROM:CITY CITY-1 TO:CITY CITY-2 

F,: LIST FLIGHTS CHEAPEST FROM:CITY CITY-1 

TO:CITY CITY-2 

Certain phrases in source language sentences 
tend to co-occur with certain phrases in target lan- 

guage translations. To model this fact, we consid- 

ered phrase-features of the form 

The feature 

&east eXpenSiVe, CHEAPEST 

fires on (E,, J’s), but not on (Es, F2) or (El, F,). 
A special case with a null s-phrase results in fea- 

tures that induce target language modeling. With 

such features, there is no need to estimate target 
language model separately. A variation of a phrase 

feature is one which ignores the order of words in 

s-phrase and t-phrase. Another is a long-distance 

bigram feature. 

Sometimes we know that certain words will not 

occur in the translation except when certain words 
occur in the source sentence. A feature that looks 
for existence of words in the target sentence that 

do not have an “informant” in the source sen- 

tence models this fact. An example feature is one 
that looks for the word “CHEAPEST” in Formal in 

the absense of “lowest” and “cheapest” in Eng- 
lish. This feature fires on (E2, Fs) but not on 

(E,, F,). Such features almost never fire on the 

training data. 

In summary, features query presence or absence 
of n-grams, long-distance bigrams, or unordered 

(possibly empty) sets of words in both source and 

target language sentences. 

3.2. Feature Selection and Optimization 

We described a variety of features so far. Let 
4(S, T) be a vector feature of dimension n. We 

consider models P of the form 

P&V) := 
Po(TjS)eX~(S~T) 

-w) 

with the normalization factor 

Z(S) := c Po(TIS)eX4(S’T). 
T 

With cri := eXx, we can rewrite the above as 

P(TIS) = 
Po(T~S)IIa~‘(S’T) 

Z(S) . 

In this formulation, we see that each feature that 

is true (i.e. takes the value 1) gets a multiplicative 
“vote” cri to modify the prior score P,(TIS). 

Exponential models of the above form arise nat- 

urally in maximum entropy framework. In that 
framework, we start with linear constraints on fea- 
ture functions and look for any probability distri- 

bution that satisfies the constraints and is as close 
to a prior distribution as possible. From Lagrange 

multiplier theory, it turns out that the optimal so- 
lution is an exponential model of the above form. 

So we need only search in the family of exponen- 

tial models for the optimum solution. Here, we 

take an exponential family of models as the start- 
ing point and allow the possibility of using objec- 

tive functions other than log-likelihood of training 

data in choosing a model. We consider maximum 

likelihood and maximum discrimination problems 

here. Once we start with the exponential family, 
we do not impose any additional linear (equality) 

constraints on the model. 

We now describe feature selection. First, we as- 
sume that a set of n features 4 have already been 

selected somehow. We then solve the maximum 
entropy (or maximum discrimination) problem de- 

scribed above. The solution is standard for the 

maximum entropy problem [4]. For the maximum 

discrimination probelm, the solution involves solv- 

ing a series of linear programming problems and 

will be described elsewhere [6]. Then, D,, the min- 

imum achieved by X,, is a figure of merit of the 

feature set {$i, . . . , &}. Once the set {#i, . . ., &} 



and {Xi,...,&,) are selected, we compute D. for 

141’42,. . .’ 4n, f} for all features f in the remain- 

ing pool and rank the features by the new D.. We 
can then add the top-ranking feature as 4n+l to 

the set of features already selected and find the 

optimal weights X1, Xs, a.., X,,+r. Thus, in prin- 

ciple, we can start with n = 0 and build a good 
feature set by increasing the set by 1 in each batch. 

In practice, we add top k-ranking new features in 

each batch to the features already selected. The 
figure of merit D. increases monotonically with the 

size of the feature set. We stop feature selection 

when the increment is marginal. 

4. EXPERIMENTAL RESULTS 

We built a model to translate context-independent 
English queries. We used 5627 pairs of context- 
independent sentences from the ATIS training 

data. Examples of features that our system se- 
lected are shown below along with their near- 
optimal weights. 

Source Phrase Target Phrase cl 

arrive FLIGHTS ARRIVING-ON 39 

about AROUND 2900 

late-afternoon LATE-AFTERNOON 56000 

cheapest round-trip FARES CHEAPEST ROUND-TRIP 43 

including ALONG-WITH 280 

We compare maximum discriminative training 

and maximum likelihood training. Both methods 
share the same prior, which consists of about 300 

features. Since our purpose is in comparing train- 
ing of features by two objective functions, we may 
assume that the features in question have already 

been selected somehow. However, if they are se- 
lected by one criterion and trained by another, the 
results can be biased against the second critetion. 

In an attempt to reduce this bias, a large pool of 

features is first filtered by using log-likelihood cri- 
terion. From this small filtered pool (about 500 
features), discrimination measure is used to select 
25 features at a time. Each of these batches of fea- 
tures were then trained by log-likelihood criterion 

in one experiment and by discrimination criterion 

in another experiment. 

We report results on context-independent 
queries from ATIS DEV94 test set, which is out- 

side the training corpus. Translation performance 

is measured by Common Answer Specification, a 

metric defined by ARPA in terms of response from 

air travel database. First column shows the num- 

ber of features in the model, the second column 

shows the performance when these features are 

trained by optimizing discrimination and the third 
the performance when log-likelihood is optimized, 

PI 

PI 

PI 

PI 

Fl 

I61 

Size Discr LL 

75 84.39 82.92 

i 

150 84.63 84.14 
225 84.63 83.17 

300 84.14 83.41 
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