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ABSTRACT 

Quadratic time varying-spectral analysis methods’ that achieve a 
high resolution jointly in time and frequency generally suffer from 
interference terms that obscure the true location of the auto com- 
ponents in the resulting time-frequency representation. Unfortu- 
nately, as of now, there is no general mathematical model avail- 
able for an exact distinction between cross-terms and auto-terms. 
Consequently an attempt to suppress interferences can only rely on 
a few qualitative properties which are commonly associated with 
cross terms. Most of the reduced interference distributions that 
have been developed so far exploit the fact that cross terms tend to 
oscillate and can hence be suppressed by a properly chosen two- 
dimensional low pass filter (see [l] and [4]). Besides the fact that 
cross-terms oscillate, they are also known to be responsible for all 
negative density values of a time-frequency distribution. Non of 
the currently existing methods addresses thii characteristic. In this 
paper we introduce an entirely new approach that achieves a signif- 
icant interference reduction by specifically exploiting the negative 
density structure of cross-terms. 

1. PRELIMINARIES 

A fundamental tool for time-frequency analysis with high joint 
time-frequency resolution is the Wigner distribution QVD) (see 
[3]). Its discrete-time form can be approximated numerically by 
computing windowed FFTs from a sampled local ACF2 (R,,) : 

The window function h(m) is assumed to be symmetric. real, pos- 
itive definite and normalized to h(O) = 1. Furthermore, we restrict 
the attention to Wigner distributions that are zero for In] > M. 

Despite many desirable properties, the most predominant draw- 
back of the Wigner distribution can be found in its interference- 
terms and its negative energy density values. The key idea to what 
is currently state-f-the-art in interference-term suppression was 
developed by Choi and Williams [3]. They realized that since 
cross-terms tend to oscillate it is possible to suppress interferences 
with a fixed, two dimensional low-pass filter, which is called the 
kernel of the distribution. Besides being low-pass, the kernel might 
also satisfy additional constraints in order to maintain most of 
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’ Like the well-known Wigner-Vie Distribution for example [3]. 
2The ACF is assumed to be computed from an oversampled or sinc- 

interpolated signal in order to avoid aliasing. 

the Wigner distributions desirable properties (reduced interference 
distribution (RID). see [4]). Baraniuk and Jones extended the RID 
concept from a fixed kernel into a signal adaptive kernel [ 11. 

A mathematical framework that encompasses positive time- 
frequency distributions 0s) that satisfy the marginals was first 
formulated by Cohen and Posch. This framework, however, does 
not provide a concrete construction procedure [3]. A successful 
construction procedure for positive TFDs that satisfy the marginals 
was introduced by Laughlin, Pitton, and Atlas [6]. Their approach 
is based on the minimization of the cross-entropy (MCE) between 
the resulting positive time-frequency distribution and a positive 
prior distribution, which is usually a spectrogram. 

2. THE NEW APPROACH 

Within thii section we introduce a new approach for time-frequency 
analysis that readily generates distributions that are positive, sat- 
isfy the marginals, and have suppressed interference-terms. The 
key idea is easily explained with an example. Consider two Gaus- 
sian logons s(n) and y(n) which each have anon-negative Wigner 
distribution. Assume that the two logons occur at different times 
and different frequencies and define z(n) = s(n) + y(n.). The 
Wigner distribution of the signal z(n) is shown in figure 1. 

Wigner Distribution 
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Figure 1: The Wigner distribution W,,(n, k) of two Gaus- 

sian logom. The cross-term of the distribution and its neg- 
ative energy density values are clearly visible in the center 
of the time-frequency plane. 

There are ‘three’ noteworthy components in this representation : 
the two auto-components in the front and back of the plot and 
the cross-terms in the center of the time-frequency plane. Besides 



tackling these cross-terms by exploiting their oscillating nature we 
can also attempt to identify them based on the ‘negative-parts’ of 
the distribution. It is easy to show that the Wigner distribution 
of the signal z(n) can be expressed in terms of two auto-Wigner 
distributions and two cross-Wigner distributions. 

Wzz(n, k) = Wssm k) + W.,,(n, k) + Ws,m k) + Wy8cn. k) 
. / \ , 

allto-- ama-- 

Since we know from Cohen and Posch ([3]) that there is at least 
one distribution that is manifestly positive and satisfies the marginals, 
we can always rearrange the energy density of the Wigner distri- 
bution in such a way that 

W,,(n, k) = Ws.(n, k) + W,,(n, k) + Rtt(nr k) +xrl(n, k) 
\ , 

sCfz(n, k) 

CzZ(n, k) is a positive time-frequency distribution that satisfies 
the marginals. xlZ(n, k) is consequently the part of the cross- 
terms that is responsible for the negative energy density values of 
Wzz(n, k). The key to the new approach is to construct an esti- 
mate for xZl(n, k) based on the negative parts of the distribution. 
A positive diinibution C$n, k) with reduced interference-terms 
can thus be constructed by subtracting the cross-terms estimate 
from the Wigner distribution. 

Ch, k) = W,,(n, k) - xtr(n, k) 
Note that by definition the rows and columns of ,vZl(n, k) must 
sum to zero. Furthermore, we want x==(n, k) to ‘absorbs’ the neg- 
ative parts of W,,(n, k). i.e. xZr(n, k) = W,,(n, k) for all (n, k) 
for which WIz(nr k) < 0. We can try to find a xZZ(n, k) that 
satisfies these conditions in a minimum norm sense. Moreover, 
we might want to utilize general ‘qualitative’ knowledge about 
the location of the cross-terms by designing a special signal adap- 
tive norm that takes such considerations into account. In case of 
the proposed algorithm a special signal dependentmask function 
P(n, I;) > 0 V (n, k) serves to incorporate this kind of knowledge. 
These considerations provide the motivation for the following iter- 
ative procedure. The resluting time-frequency diitribution will be 
referred to as an iterated projections distribution (IPD). 

IPD Algorithm , 

l Initialize the iteration with a TFD that satisfies the margim& : 

Wo(n, h = Wzr(n, k) 

l Iterate the following steps : 

1. Take the negative part of the current iteration 

W,-cn, k) = i(Wi(nt k) - IWt(n, bl) (4) 

2. Obtain an estimate Xi(n, k) basedon a mask function 
P(n, k) > 0 by minimizing 

subject to ~~z-Mx,(n, k) = 0 V k 

and C~,-Lxi(n, k) = 0 V n (6) 

3With a Wigner distribution for example. 

3. Subtract the estimate Xi(n, k) from Wi(n, k) 

Wi+l(n, k) = Wi(n, k) - Xi(n, k) (7) 

It can be shown that the proposed algorithm establishes a sequence 
of successive projections onto intersecting convex polyhedra and 
thus converges linearly and pointwise to a function4 

Ch, k) = ,krn- Wi(n, k) 

that is non-negative and satisfies the marginals. The fact that the 
distribution Cr’(n, k) has suppressed interference-terms follows 
by construction. The result of the IPD Algorithm, when applied to 
the initial example of two Gaussian logons, can be seen in figure 2. 

, Positive IPD 

max 

min=O 

Figure 2: The positive iterated projection distribution 
CJz(n, k) for two Gaussian logom. The distribution is al- 
most free of any artifacts. 

2.1. Mask Functions 

The mask function P(n, k) in the IPD Algorithm is a flexible tool 
to incorporate additional ‘qualitative’ knowledge about the nature 
and location of cross-terms in the initial time-frequency distribu- 
tion. If we do not want to use such additional information we 
may simply use a unity mask: P(n, k) = 1 V (n, I;). It can be 
shown that the unity mask case corresponds to the least squares 
approach for the construction of positive time-frequency distribu- 
tions, which was introduced by Sang, Williams and O’Neill in 
1996 (see [7]). The presented algorithm can thus be viewed as 
a generalization of this concept. 

Usually we would be interested in utilizing additional prior 
information. The way P(n, k) will influence the result of the IPD 
Algorithm is by assigning different weights to different locations 

of the error-term 1 WiS(n, I;) - x,(n, k)l’. Whenever P(n, k) is 

small we want to have a small deviation between W,-(n, k, and 
Xi(n, k) and whenever P(n, k) is large we want to encourage a 
large deviation between WiB(n, k) and x,(n, k). This implies that 
P(n, k) should be large at those index-pairs (n, k) for which W, 
has cross-terms and is not negative. P(n, ii) should be small ev- 
erywhere else. A ma.skGction that proved to be very successful 

41t can be shown that the IPD Algorithm constitutes a special case of the 
theory presented in [2]. theorem 5.7, page 393. Note that we are operating 
in a finite dimensional Hilbert space. 



in capturing these conditions is a combination of a ‘distribution 
mask (PO) with a ‘vicinity’ mask (Pv) : 

P(n, k) = PD(rz, k). I%@, k) (9) 

with PD(n, k) = IW,,(n, k)l + Wdn, k) + f (10) 

Pvcn, k) = p=-co q=--a, 
V n, k SS. W,,(n, k) 2 0 
V n, k s.t. W,,(n, k) < 0 

where KAn, k) = $(W,,(n, k) - IWz,(n, k)I) (11) 

The ‘distribution’ mask provides information about the loca- 
tion of large positive terms in the distribution. The ‘vicinity’ mask 
incorporates ‘qualitative’ knowledge about the probable location 
of cross-terms in the distribution. It assumes that cross-terms are 
usually locally concentrated and thus most likely in the vicinity of 
strong negative density values. The parameter Q determines how 
far the positive parts of the cross-terms are expected to be spread 
away Erom their corresponding negative parts. 

It can be ver6ed by inspection that P(n, k) satisfies the de- 
sired properties that were mentioned above. Note, that it is seems 
necessary to add in a small constant c, which ensures that P(n, k) 
remains strictly larger than zero. This is required for equation (5) 
to be well detined. However, one can show that the resulting sys- 
tem of equations (see section 3) remains solvable and that the con- 
vergence of the algorithm remains guaranteed even if a si ificant 
number of elements of P( n , k) is identically equal to zero P . Gener- 
ically we can thus pick c = 0 for any practical application. 

3. PROJECTION COMPUTATION 

In this section we describe the solution for the constraintoptimiza- 
tion problem that is implied in step 2 of the IPD iterations. The 
derivation of the following equations has to be omitted due to the 
brevity of the paper. It is based on a Lagrange multiplier (X, and 
ak) strategy that leads to a linear, positive definite system of equa- 

tions. We will use the following vector notation : 

L M 

WC(~) = c W.-m k) wf(k) = gz W,-w,k) 
k=-L n=-M 

(12) 

Qn = 2 Pen, k) Rklk#L = 2 Pcn,k) (13) 
k=-L n=-M 

5The details have to be omitted due to the brevity of the paper. 

(diag denotes a diagonal matrix) 

P(-M,-L) 

[ * 

. . . P(-M,L-1) 

sa= : P(O,O) : (17) 

P(M,-L) . . . P(M,L-I) I 

The matrix H is a lower triangular matrix that results form the 
Cholesky decomposition of the following term : 

(R - fl=Q-%t) = H HT (18) 

Using these definitions one can compute the projection result ,yi 
as follows : first compute vector 6 from 19 = f - hZTQ-rt. 
second solve for vector v via back-substitution of H v = 6. now 
back-substitute for u in HTa = V. then compute X from X = 
Q-’ (t - Ct a), and finally obtain the result from 

x,(n, k) = W,-(n, k) - P(n, k)(X, + bk) V k # L; n 

Xi(?l, L) = Wi-(n, L) - P(n, L)X” Vn 

For the special case of a unity mask P(n, k) = 1 we obtain the 
following simple solution : 

Xi(n, k) = Wi-(n, k) - iwt(n) - iwl(k) + g (19) 

with AE= 2 wdn) = 2 wf(k) 
n=-M k=-L 

It is worth mentioning that this solution implicitly establishes a fast 
computation procedure for the LMS method proposed by Sang, 
Williams and O’Neill [7]. 

4. EXAMPLES 

In thii section we demonstrate the performance of the iterated pro- 
jections distribution (IPD) side by side with other signal adap- 
tive distributions that are either positive or have suppressed cross- 

terms. A commonly used signal for TFD performance demonsea- 
tions is a signal with a sinusoidal frequency modulation : 

3,&n) = e 
--jm.sin(w,n)--Jw.yn 

Baraniuk-Jones Distribution (vol=5) 

-I/-;,,,,I 
time marginal 

Figure 3: A signal adaptive distribution of s,ire( n) affer 
Baraniuk and Jones [I]. 



Figure 3 displays the result for the signal adaptive distribution after 
Baraniuk and Jones [ 11. The kernel volume was chosen to achieve 
a reasonable tradeoff between cross-term suppression and auto- 
term resolution. The signal adaptive approach is neither positive, 
nor does it satisfy the marginals (unless additional constraints are 
incorporated into the optimization procedure).Note that the axis 
systems below and aside of the contour plots represent the time 
and frequency marginal of the distribution (solid line) compared 
to the true instantaneous/spectral power of the signal (dotted line). 

MCE Distribution from Spectrogram 
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Figure 4: The MCE distribution after Laughlin, Pitton, and 
Atlas [61 (computedfrom a spectrogram). 

The positive TFD that satisfies the margmals and is closest to the 
spectrogram, in a minimum cross-entropy sense, is shown in fig- 
ure 4. It was computed according to the algorithm suggested by 
Laughlin, Pitton, and Atlas [6]. The joint time-frequency resolu- 
tion is, as expected. not better than the one of the underlying prior. 

Positive IPD * 
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Figure 5: The positive IPD of the sigrml s,h( n ) after 50 
iterations. 

5. CONCLUSIONS 

A new approach to the reduction of interferences in discrete qua- 
dratic TFDs with a high joint time-frequency resolution was intro- 
duced. Instead of smoothing the time-frequency plane with a low- 
pass filter, the cross-components were estimated in parts based on 
the location of the negative energy density values of the initial di.+ 
tribution. The subtraction of these cross-term estimates from the 
initial TFD suggested an iterative procedure. This procedure was 
shown to be linearly convergent to a manifestly positive represen- 
tation that satisfies the marginals. 

An advantage of the described algorithm is that we can read- 
ily incorporate ‘qualitative’ prior knowledge about the structure 
of cross-terms and auto-terms into the resulting representation by 
means of a mask timction. Examples for the construction of sev- 
eral mask functions were given. 

It was demonstrated with examples that the proposed algo- 
rithm can improve upon existing methods for the reduction of cross- 
terms, as well as improve upon methods for the design of positive 
TFDs that satisfy the marginals. A drawback can be found in the 
high computational complexity, even though a ‘fast’ computation 
method was developed. 

Furthermore. it was shown that the approach can be viewed 
as the generalization of the method proposed by Sang, Williams 
and O’Neill[7]. Additionally, it is worth to mention that the very 
recent work on positive TFDs conducted by Loughlin and Emresoy 
seems closely related [5]. 
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Figure 5 shows the positive IPD of the signal s,&(n). The cross- 
components are strongly suppressed, and yet the auto-term resolu- 
tion is still very high: jointly in time and frequency. Moreover, the 
distribution is positive and it satisfies the marginals. 


