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ABSTRACT 

A mathematical analysis is performed on a recently re- 
ported gradient-based adaptive algorithm named the 
Euclidean Direction Set (EDS) method. It has been 
shown that the EDS algorithm has a computational 
complexity of O(N) for each system update, and a rate 
of convergence (based on computer simulations) com- 
parable to the RLS algorithm. In this paper, the stabil- 
ity of the EDS method is studied and it is shown that 
the algorithm converges to the true solution. It is also 
proved that the convergence rate of the EDS method 
is superior to that of the steepest descent method. 

method is a new gradient-based adaptive process and it can 
be implemented by a Euclidean direction search procedure. 
A mathematical analysis of stability and convergence rate 
are presented in Section 3. Concluding remarks are given 
in Section 4. 

2. EUCLIDEAN DIRECTION SET METHOD 

Consider the following quadratic optimization prob- 
lem, 

J(W) = mkN (W=RW - 2WTP + d}, (1) 

where R is an N x N real symmetric positive definite matrix 
(Hessian); P and variable W are vectors of order N, and d 
is a scaler. The notation (.)= means the transpose of (.). 

1. INTRODUCTION 

Adaptive filtering algorithms have been very successful 
in a wide variety of applications. The LMS algorithm is still 
very popular due to its computational simplicity. The slow 
convergence rate of the LMS algorithm is well known. On 
the other hand, the R.LS algorithm has a fast convergence 
rate but its computational complexity of O(N2) makes its 
use prohibitive in many applications. A variety of other 
adaptive filtering algorithms have been recently reported in- 
cluding the Conjugate Gradient (CG) based methods and 
the Fast %ursversal Filters (FTF) which have their own 
sets of pros and cons. Very recently, a direction set (DS) 
based algorithm was introduced in [l] for adaptive filtering 
applications. The algorithm keeps the minimum search ei- 
ther on a set of near conjugate directions with respective 
to the Hessian matrix or simply on a set of Euclidean co- 
ordinate directions. The proposed algorithm was shown to 
have a computational complexity of O(N) for each coeffi- 
cient update and a rate of convergence, based on computer 
simulations, comparable to the RLS algorithm [l], [2]. The 
application of this algorithm was also investigated and it 
performed very well in system identification and spectral 
estimation. 

The minimum of J(W) can be obtained by setting the 
gradient V = 0, where V 4 w = 2RW -2P. This yields 
the normal equation : RW = P. Since R is nonsingular, 
the optimal solution W. equals R-‘P. Rewriting this in 
terms of the initial value W(0) and the gradient V(O), where 
V(0) e V ]w=w(e), gives the so called one-step Newton’s 
method W. = W(0) - :R-‘V(O). 

By introducing a constant ~1 to regulate the convergence 
rate, Newton’s method can be expressed as: 

W(k + 1) = W(k) - ;R-‘V(k), (2) 

where W(k) denotes the variable vector at step k, V(k) g 

V IW=Wckj= BRW(k) - 2P, and 0 < p < 2. 
Since matrix R is unknown in most practical applica- 

tions, R-’ in Newton’s method must be estimated based 
on a statistical sample, which in general, is computation- 
ally expensive. 

The steepest descent method avoids dealing with matrix 
R-’ and updates the variable vector W on the negative 
gradient direction as follows: 

W(k + 1) = W(k) - ;V(k) , (3) 

In this paper, we perform a mathematical analysis of 
the Euclidean direction set (EDS) method and prove that 
it converges to the true parameters and that its convergence 
rate is superior to the steepest descent method. The paper 
is organized as follows: In Section 2, we show that the EDS 

whereO<p< & and X,,. is the largest eigenvalue of R. 
This simplification makes the steepest descent method very 
popular in practical applications. However, the fact that 
the convergence rate is bounded by the condition number 
of matrix R is well known [3]. 
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can be written as: 

W(k + 1) = W(k) - ;A-‘V(k) , (4) 

where 0 < p 5 1, and A is an N x N matrix with elements 
{oi,j}. Matrix A is related to matrix R as below. 

In the Direction Set method, the algorithm performs 
line search along the Euclidean directions systematically in 
a cyclic manner. When one direction is chosen at a time, the 
method is called EDSl. In this case, A is a lower triangular 
matrix with 

Oi,j = 
{ 

ri,j, for i = 1,2,-o. N; 15 j 5 i; 
0, otherwise > 

. (5) 

When two directions are used for line searches at a time, 
the algorithm is called EDS2. In this case, A becomes a 
lower block triangular matrix with the row size in each block 
being 2, i.e. 

ri,j, for i = 1,2,**.Ni 15 j 5 i; 
lZi,j = 

i 

ri,j, for i = 1,3,. . . M; j = i + 1; 

1 
(6) 

0, otherwise 

where ri.j is the element of R and M = N - 1 for N is even, 
otherwise, M = N - 2. 

Define a(k) = W(k+l)-W(k). Substituting a(k), V(k) 
into Eq. (4) and multiplying both sides by A, gives: 

1 

Aa = -p(RW(k) -P); 
W(k + 1) = W(k) + a(k). > 

Note that if A is a triangular or block triangular matrix, 
a(k) can be solved explicitly. 

Assume R = {ri,j}, P = [Pr,pz;-*,p~]~, /J = 1, and 
at time k, W(k) = [wI,~, ...,w~]~. W(k + 1) can be 
updated by the following EDSl or EDS2 search cycle with 
O(N) multiplications in each loop. 
EDSl: (one Euclidean direction search at each loop.) 

{ fori=l:N 

(1): Ei =3$1 ri.jWj - Pii 

(2): f& = -5; 
ri.i 

(3): Wi = Wi + 0%. 1 

EDSB: (double Euclidean direction search at each loop.) 
{ for i = 1 : N/2 

N 

(1): EZi-1 =C r2i-1,jWj -p2i--lr 
j=l 

N 

E2i = C r2i,jWj - p2i; 
j=l 

(2): r = r2i-l.2i-lr2i.2i - r2i-l,2ir2i,2i-l; 

(3): CYzi-1 = - czi-l?-Zi-1 ai--l-c2irai-, 2; 
r I 

CY2i = - 
CZ;rZi zi-c.&?-z; 2i-I 

r 1 
(4): W2i-1 = WZi-1 + a2i-1, 

W2i = W2i + CQi. 

if N is odd 
N 

(1): EN =c rN,jwj -PN; 
j=l 

(2): , ON = -+‘-; 

(3): WN=WN+CYN. 1 

The above search procedures are named Euclidean di- 
rection set (EDS) algorithm because it is equivalent to per- 
forming an orderly minimum search on a set of Euclidean 
directions, which was originally developed in [l], [2]. Such 
a one-by-one search scheme ensures that the sample-based 
EDS algorithm has O(N) computational complexity in each 
system update. 

Intuitively, we expect the EDS algorithm to converge 
faster than the steepest descent method and to be compu- 
tationally less complex than Newton’s method, because the 
EDS method utilizes matrix R partially and does not have 
to compute the inverse of matrix A. 

3. ANALYSIS OF THE EDS METHOD 

3.1. Stability of The EDS Algorithm 

We begin the stability analysis by defining an error 
vector as C(k) k W(k) - W., where W. = R-‘P is the 
optimal solution of (1). Subtracting W. from both sides of 
(4), and using V(k) = 2(RW(k) - RW.), the error recursive 
equation becomes 

C(k + 1) = (I - ,uA-‘R)C(k), 

where I is the identity matrix. With an initial value of 
C(O), for the error vector, the solution of (??) is 

C(k) = (I - /LA--‘R)%(O). (7) 

It is well known that C(k) + 0 as k + co, if and only 
if ~(1 - pA-‘R) < 1, where p(.) denotes the maximum 
absolute eigenvalue of (.). 

Based on the fact that matrix A is a lower triangular 
submatrix of R, the following theorem provides a sufficient 
condition for the convergence of the EDS algorithm. It is 
worth noting that this sufficient condition is independent of 
the largest eigenvalue of matrix R. 

Theorem 1 Let R be an N x N symmetric positive def- 
inite matrix, and matrix A Le as defined as (5) or (6), with 
the step-size parameter 0 < /.J 5 1. The Euclidean direction 
set (EDS) algorithm converges to the optimal solution. 

Proof: Let B k A + AT - R. It is easy to verify that 
matrix B is a block diagonal submatrix of R, with each 
block size being 1 x 1 or 2 x 2. As proven in the next 
subsection, matrix B is symmetric and positive definite. 
Now, assume that X and z are the eigenvalue and associated 
eigenvector of matrix A-‘R where 

(I - A-‘R)z = (1 - X)z. 

Multiplying by z*A, taking the absolute value of both 
sides, and rearranging gives 

,1 _ x, = Ix*Ax - x’R4 
lz*Az( ’ (8) 

where (.)’ denotes the conjugate transpose of (.). 
Recall that for z E CN;x # 0, X’RX > 0 , x’Bx > 0, 

and Ft.e{x*Az} = x’(w )x = x*(v)x. If x*Rz = 2a 
x*Bx = 2c, then, x*Ax = a + c + jb, where b is real. So: 
substituting a, b, c into (8), we have 



which implies that ~(1 - A-‘R) < 1. Lemma 1 Assume R is an N x N symmetric positive 
Since for 0 < ~1 5 1, p(I- pA-‘R) < p(I - A-‘R) [6], definite matrix, and matrix B is a block diagonal subma- 

we have C(k) -+ 0 as k + co in (7), and the conclusion trix of R, with each block being square, then, matrix B is 
follows. fl symmetric, positive definite, and 

3.2. Convergence Hate of The EDS Method 

In the previous section, we have shown that ]I - X] < 
1, which implies that X # 0. Therefore, using similarity 
transformation, we may express (7) as 

C(k) = Q(I - /LA)~Q-%(O), 

where matrix A is a diagonal matrix containing the eigen- 
values of matrix (A-‘R), and A-‘R = &A&-‘. For conve- 
nience, define a new vector V(k) = Q-i C(k), so that 

V(k) = (I -&V(O). 

Clearly, the convergence rate of each element vi(k) in 
vector V(k) is dependent on the associated eigenvalue Xi of 
matrix (A-‘R). 

The quantity ri = 1 - PXi is known as the “geometric 
ratio”. Note that when the absolute value of ri is less than 
1, the rate of convergence increases as ri decreases. 

As mentioned in [4], the overall convergence rate r can- 
not be expressed in a simple closed form. But fortunately, 
the absolute value of geometric ratio r is lower bounded. 
So, we indicate that the convergence performance of the 
EDS method is superior to the steepest descent method by 
showing that the lower bound ]rlbound in the EDS method 
is lower than that of the steepest descent method. 

Throughout the rest of the paper, Xi( .), A,.,( .) and 
Amin will denote the ith, the largest and the smallest 
eigenvalues of matrix (.), respectively. 

The it% geometric ratio, for the steepest descent method, 
is ri = 1 - pXi( R), where 0 < p < &. The overall 
convergence rate is lower bounded as 

lrl 2 max{]l - /&,,(@I, ]l -/&i”(R)]}. (9) 

The best step size /J for the convergence occurs at 
/.J&,.~(R) - 1 = 1 - pAmi”( which gives 
P= Xmlx(Rj~X,,,,,(Rl. Substituting it into (9), yields 

Id 2 
Anax - h”(R) 
Lax(R) + Amin( 

So, in the steepest descent method, 

Id 
X,,,(R) - &n(R) 

bound = Lax(R) +&n(R) 

where w equals the condition number of R. 

Note that (rlbound decreases as the ratio m de- 
creases. Hence, the convergence rate increases as the ratio 
m decreases. “1,” 

In order to compare the bounds between two methods, 
let’s prove the following lemma first. 

Amin 2 Lin(R); km,(B) < X,,,(R). 
Proof: For i = 1,2,. . . , N, the ith principle submatrix 

Ri of R is the i x i submatrix consisting of the intersection 
of the first i rows and columns of R. Let Bj denote the jth, 
block submatrix in B, i.e. B = { B1 @ B2 . . . @I BL}. Since 
any principle submatrix of a symmetric positive definite 
matrix is symmetric positive definite and ilk(R) < &(Ri) 5 
Xk+N-i(R) for each integer k such that 1 5 k 2 i [5], it 
therefore, follows that the first block in B is symmetric, 
positive definite, and 

Anin 2 kin(R); Anax I Anax( 

Recall that there exists the permutation matrices which 
can bring the other blocks being the first block without 
effect of the symmetric and positive definite properties (61, 
and 

&n(B) = j=pL {Anin( ; 

X,,,(B) = jz”, {xmax(Bj)). 

We thus proved that matrix B is symmetric, positive 
definite, and 

kin(B) L hi”(R); Lx(B) 5 X,.,(R). !I (12) 

In the EDS method, for p = 1, the overall convergence 
rate 

Ir’ Qg-F N (11 - Xi(A-‘R)I}, 
I 9 ‘I 

and 

Id bound = 

Since X’RX is real, it is easy to see that the above supre- 
mum occurs when x’ Ax is real. Note that, if x* Ax is real, 
then x’Ax = x*~x and x*Ax-x+Rx = x*Fx. There- 
fore, 

Id bound 

I SUP {‘x’Rz - x*Bx’) 
I*AzERN;,#O x*Rx + x* Bx 

= 

if x*Rx 2 I* Bx; 

6 if x’R.z < x’Bx; 

That is, 

Id 



Recall Lemma 1, and note that when the equality in 

(12) occurs, Irlbound = 0. Therefore, z > z and 

Rl An,.~( 

Lhf RI > s are true in general, which asserts that 

in the EDS is lower than that in steepest descent 

If e is close to 1, with proper step size p, both 

EDS and steepest descent method converge fast. However, 

when )Lm.xo is large, the last u < ” in (14) is a very con- 
hmin(R) 

servative step. Since matrix B is a block diagonal subma- 
trix from R and matrix R is central majorized., sup 

zERN;r#O 

w is most likely close to the ratio ems 

instead of Mi or Mi , i.e. when 

a is large, 
A”li”(R) 

b-1 I 
,x’Ax - x*R.z’ 

bound sup 
+ECN;z#O Ix* Ax\ > 

~ &in(B) - kin(R) 
kin(B) + kin(R) 

(16) 

This implies that the convergence rate of EDS is limited by 
the condition number of matrix R somewhat too. In ad- 
dition, (16) also exploits the fact that the double direction 
search seems to converge more rapidly than the one direc- 
tion search because Xmin(B) is smaller and more close to 
Xmin(R) in EDSZ. 

4. CONCLUDING REMARKS 

The recently reported Euclidean Direction Set (EDS) al- 
gorithm for adaptive filtering has been considered. It is 
shown that this algorithm is really a gradient based adap- 
tive process. This formulation makes it suitable for mathe- 
matical analysis. It is then proven that the EDS algorithm 
converges to the true parameters. The convergence rate of 
this algorithm is also mathematically shown to be superior 
than the LMS algorithm. 
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3.3. Example 

A simple example of a single-input adaptive linear com- 
biner with two weights is shown in Fig. 1. The input and 
desired signals are sampled sinusoids at the same frequency, 
with M = 6 samples per cycle. This is the same example as 
in (3). The input correlation matrix R and the correlation 
vector P are calculated as follows: 

R = E 4 xkxk-1 

xk--1xk d-1 1 ’ 

P = E{[ dkXk &k--l I}’ = [ 0 -9 ] . 

Solving det(XI-R) = 0, gives that Amin = 0.25, X,,,(R) = 
0.75. From (ll), Irlbound = !j. 

];B=[ ;.5 ;.,I. 

X,i”(A-‘R) cb.75, Lax(AmlR) = 1, and Irlboun = f 
based on (13). From (15) and Xmin(B) = x,,,(B) = 0.5, 
we conclude that IrI 1 g minimally. 

Fig.2 plots the instantaneous squared error at each adap 
tive iteration starting with W(0) = 0. This shows that 
for ~1 = 1 the EDS adaptation needs about 25 iterations 
to converge and 50 for the steepest descent method with 

cc= 
2 

bn.x R +&,I,, R)’ No doubt, the EDS2 method here 
is equivalent to Newton’s method and can converge in one 
step. 

Fig. 1 Example of an adaptive linear combiner with hvo weights 

Fig. 2 The imtmtaneous square error for each iteration 


