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ABSTRACT 

Measures of independence (and dependence) are funda- 
mental in many areas of engineering and signal process- 
ing. Shannon introduced the idea of Information Entropy 
which has a sound theoretical foundation but sometimes is 
not easy to implement in engineering applications. In this 
paper, Renyi’s Entropy is used and a novel independence 
measure is proposed. When integrated with a nonparamet- 
ric estimator of the probability density function (Parzen 
Window), the measure can be related to the “potential 
energy of the samples” which is easy to understand and 
implement. The experimental results on Blind Source Sep- 
aration confirm the theory. Although the work is prelimi- 
nary, the “potential energy” method is rather general and 
will have many applications. 

1. INTRODUCTION 

Information theory is a powerful tool in communication, 
signal processing, and even machine learning. The parallel 
between information and energy is well known and here 
their measures will be also linked. This paper shows that 
our proposed information measure is connected to “poten- 
tial energy” in the scenario of “learning from examples”. 
In this case, a machine learns from the interaction with its 
environment through examples, where each example is a 
point in a problem space (e.g. feature space, input-output 
space, etc) and can be regarded as a “particle” in the 
“potential field” formed by all other examples. As a result, 
machine learning can be thought of as the interaction 
between the examples driven by the “forces” among them. 

Early in 1928, Hartley proposed a logarithmic measure of 
information [ 11. Later in 1948, Shannon pointed out that 
Hartley’s measure is valid only if all events are equiproba- 
ble [2]. Further he coined the term “Information Entropy” 
which is the mathematical expectation of Hartley’s mea- 
sure. In 1960, Renyi generalized Shannon’s idea by using 

an exponential function rather than a linear function to cal- 
culate the mean [3], [4]. Later on, other forms of informa- 
tion entropy appeared (e.g. Havrda and Charvat’s measure, 
Kapur’s measure) [5]. Although Shannon’s entropy is the 
only one which possesses all the postulated properties for 
information measure, the other forms such as Renyi’s, 
Havrda and Charvat’s are equivalent with regards to 
entropy maximization [5]. In a real problem, which form 
to use depends upon other requirements such as ease of 
implementation. 

The motivation of this work is to find a direct and general 
measure of information for discrete samples. The fact that 
all the above measures are functions of the probability 
density function (pdf) make pdf estimation inevitable. In 
the “learning from examples” scenario, information is pro- 
vided in terms of examples and the pdf on the output space 
of a learning machine can be estimated using a nonpara- 
metric estimator (i.e. Parzen Window [7]). Although non- 
parametric estimation of the pdf from samples in high 
dimensional spaces is ill-posed [ 131, here the dimension of 
the output space is under user control. Entropy maximiza- 
tion for a learning machine with finite dynamic range out- 
puts is achieved by the criterion of mean squared 
difference between the output pdf estimated by Parzen 
Window and the uniform distribution [8]. Obviously, such 
a measure is crucial for the development of “learning from 
examples” algorithms because it allows direct interaction 
between samples. 

It turns out that Renyi’s entropy with order 2 (also called 
quadratic entropy [6]) can be gracefully integrated with 
the Parzen Window method resulting in a “potential 
energy” measure of information for discrete samples. 
However, instead of entropy maximization, optimization 
of mutual information (both maximization and minimiza- 
tion) is usually more desired in a learning process [8], 
[14]. Unfortunately, there is no such graceful integration 
of the above entropy measures with respect to optimiza- 



tion of the mutual information. Based on the Cauchy- 
Schwartz inequality, a novel measure is proposed which 
has a quadratic form and results in a “potential energy” 
representation. Although strict justification has not yet 
been obtained that the measure is appropriate for depen- 
dence (maximization of mutual information), it is evi- 
dently a measure of independence (minimization of 
mutual information). As a direct consequence, the mea- 
sure is applied to blind source separation which is an 
important practical example of independent component 
analysis (ICA) [9], [lo], [ 111. 

2. Renyi’s Entropy and Potential Energy 

LetaioRm,i = l,..., N, be a set of samples from a ran- 

dom variable YE R” in m-dimensional space. One inter- 
esting question is what will be the entropy associated with 
this set of data points. One answer lies in the estimation of 
the data pdf by the Parzen Window method using a Gauss- 
ian kernel: 

fycY)= iiG(y-ai,021) 
i=l 

(EQ 1) 

where G( , ) is the Gaussian function, cr2 is the vari- 

ance, and I E R” xm is the identity matrix. When Shan- 
non’s entropy is used along with this pdf estimation, the 
measure may become very complex. Fortunately, Renyi’s 
entropy with order 2 may lead to a simpler form. Gener- 

ally, Renyi’s entropy with order a (differential entropy 
for continuous random variable) is as eq. 2: 

R,(Y) = &log I f~)"dy,a>O,a+ 1 EQ 2) 

If S(Y) is the Shannon’s entropy (differential) for Y, 

then Ii,“, R,(Y)= S(Y) , and RP( Y) 2 S(Y) 2 Rr( Y) , 

for 0 < p < 1 and 1 < y . So, Shannon’s entropy can be 
viewed as one member of Renyi’s entropy family. When 

a = 2, Renyi’s entropy R2( I’) is also called quadratic 

entropy. Combining eq. 1 and eq.2 and using the relation in 
the Appendix, the entropy measure for a set of discrete 

data points H( { ai } ) becomes: 

I W{ail) = R2(Yl{ai}) = -logP({a,}) 

/ 

N N 

p({aiI) = $F,F,G(aj-aj, 20’0 
(EQ 3) 

I 
‘* i=,j=l 

Making the analogy between data points and “particles”, 

P( { ai}) can be regarded as the overall potential energy 

since G(ai-aj, 20~1) can be taken as the potential 

energy of “particle” ai in the potential field of “particle” 

aj, or vice versa. So, maximizing entropy in this case is 
equivalent to minimizing potential energy. If all the data 
points can be freely moved in a certain region of the space, 
then the forces between each pair of points: 

dG(ai-aj, 2a21)/8ai or 8G(ai-aj, 2021)/aaj will 

drive all the points to a state with minimum potential 
energy, at least locally. The interaction among data sam- 
ples can also be thought of as an error that needs to be 
minimized to achieve maximum entropy [8]. 

Suppose that the problem is one of finding a mapping: 

R”+Rm: Y = q(X, 6) where 8 is a set of unknown 
parameters such that the entropy in the output space 

H( { ai}) is maximized. If we consider the points ai as the 

outputs of the mapping ai = q(b, 0) when the given 

input data are bi E R”, i = 1, . . ., N the problem is to 

find 0 such that the potential energy in the output space is 

minimized. In this case, following the idea of “error back- 
propagation” [12], the forces will be back-propagated to 

each parameter in 6 according to the chain rule: 

N apaq 
j+{%(e))) = Cm 

i= I 
(EQ 4) 

i.e. we obtain a general, nonparametric, and sample-by 
sample methodology to adapt arbitrary nonlinear (smooth) 
mappings based on entropy maximization. 

3. Cauchy-Schwartz Independence Measure 

As pointed out above, mutual information is a more gen- 
eral idea than entropy, and it is sometimes more desirable 
[ 141. The mutual information between two random vari- 
ables can be measured with the Kullback-Leibler diver- 

gence Kcf;g) = Jf(x)logCf(x)/g(x))dx where f(x) 

and g(x) are two pdfs. The corresponding Renyi’s mea- 

sure of divergence between two pdfs with order a is: 

R,(fi g) = log(/~x)a/g(x)a-‘)&)/(a- I) . We can 

see that neither of them can be integrated with Parzen 
Window in eq. 1 to produce a simple result. Based on the 
Cauchy-Schwartz inequality, the following symmetric 
measure is proposed: 



(EQ 5) 

It is easy to show that Cu, g) 2 0 and the equality holds 

true if and only if f(x) = g(x) . For two random variables 

Y, and Y2 (with marginal pdfs fu,@,) , fv,b2) and 

joint pdf fu, u,@, , y2) ), the independence measure can be 

written as C(Y,, Y,) = 

because the non-negative C( Y,, Y,) equals 0 if and only 

if Y, and Yz are statistical independent. If a set of data: 

{a, i= 1, . . . . N} in the joint space of Y, and Y,, (i.e. 

ai = (ail, ai2)T is in the same space as (I’,, Y2)r) is 

given or observed, the pdf estimation in eq. 1. can be used 

and the independence measure between Y, and Y, based 
on the set of data becomes: 

P((ai})Pl((ail>>P*(~ai2}) 
C((Y,, Y2)l {ail)=hS 

Pc({ail)2 
(EQ 6) 

where P( { ai}) is the potential in the whole space, 

N 

P,(j, { ai}) = $z G(aj,- air, 2021,) is the partial mar- 
i=l 

ginal potential (I = 1,2), P,({a,}) = kiP,(j, {ai)) 
j=l 

is the marginal potential, and 

P,({ail) = itPl(i, {aiJ)P2O’, {ail) is the cross- 
j=l 

potential. The independence of two variables requires both 

small joint potential, small marginal potentials and large 

cross potential. It should be noted that Y, or Y, can be 
either scalars or vectors and that eq. 6 can be easily 
extended to more than two variables. 

4. Application to ICA & Blind Source Separation 

Given a input data set { bi} ICA seeks to find a set of 

parameters 8 in a parametric mapping Y = q(X, 0) so 

that all the components of Y are statistically independent. 
The Cauchy-Schwartz independence measure can natu- 
rally be used in this problem. The forces associated with 
different potentials described above can be calculated and 

back-propagation can then adjust the parameters 0 . 

Blind Separation is a specific case of ICA, where the 

observed data X = AS is a linear mixture (A E Rm ’ m ) of 

independent source signals (S = (S,, . . ., S,,,)r , Si inde- 

pendent with each other). The problem is to find a projec- 

tion WE Rm”“, Y = WX so that Y = S up to a 
permutation and scaling. Below, we present the results of a 
linear de-mixing system trained with the proposed method 

5. Experiments 

For ease of illustration, only 2-source-2-sensor problem is 
tested. There are two experiments presented here: 

Experiment 1 tests the performance of the method on a 
very sparse data set. Two different colored Gaussian noise 
segments are used as sources, with 30 data points for each 
segment. The data distribution for source signals, mixed 
signals and recovered signals are plotted in figure I. Fig- 
ure 2 is the training curve which shows how the SNR of 

de-mixing-mixing product matrix ( WA ) changes with 
iteration (SNR approaches to 36.73dB). Both figures show 
that the method works well. 

Source Mixed Signal Recovered 
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Figure 1. Data Distribution 
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Figure 2. Training Curve for Experiment 1 

Experiment 2 uses two speech signals from the TIMIT 
database as source signals (Figure 3). The mixing matrix is 
[ 1, 3.5; 0.8, 2.61 where two mixing direction [ 1, 3.51 and 
[0.8,2.6] are similar. Whitening is first done on mixed sig- 



nals. An on-line implementation is tried in this experi- 
ment, in which a short-time window slides over the speech 
data. In each window position, speech data within the win- 
dow are used to calculate potentials, related forces and 
back-propagated forces to adjust the de-mixing matrix. As 
the window slides, all speech data will make contribution 
to the de-mixing and the contributions are accumulated. 
The training curve (SNR vs. sliding index, SNR 
approaches to 49.15dB) is shown in figure 4 which tells us 
that the method converges fast and works very well. We 
can even say that it can track the slow change of mixing. 
Although whitening is done before the “potential energy” 
method, we believe that whitening process can also be 
incorporated into this method. 

APPENDIX 

Let G(x-a, C,) and G(x-uj, C,) be two Gaussian 

function with mean ai and uj, covariance matrix C, and 

C, respectively, where x, a, uj E R”, C,, C, E R” xm, 

then there is following relation: 

mG(x-ui, X,)G(x-uj, C,)a!x = G(ui-aj, (C, +C,)) 
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Figure 3. Two speech signals 

v._.^.- ““-- 
-- -_ 

h -.-- - - --- 

w -- 

i 

6. CONCLUSION & DISCUSSION 

This paper gives a direct measure for entropy and indepen- 
dence of discrete data sets. This is significant because 
entropy and independence can be related to potentials and 
the optimization can be computed directly by the interac- 
tion between samples. However, the kernel size is a hmc- 
tion of the data and the way to choose it and how it may 
affect the performance remains to be investigated. In the 
Cauchy-Schwartz independence measure, instead of the 
ratio, a difference can also be used but it may produce per- 
formance surfaces that are more difficult to search. Simi- 
larly, the mean squared difference between joint pdf and 
factorized marginal pdfs can also be used which are essen- 
tially the same as the Cauchy-Schwartz measure. 
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