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ABSTRACT 

This paper explores the different frequency contents in 
short time segments (temporal microstructure) of speech 
to identify the mixing matrix in blind source separation. 
We propose a new method based on the eigenspread in dif- 
ferent frequency bands to identify the segments which 
contain only one of the mixtures. It is much simpler to 
accurately estimate the mixing matrices from these seg- 
ments. This short-time subband analysis trains very fast 
and estimates reliably the column vectors of the linear 
mixture. Simulation results show that our proposed 
method outperforms the existing model-based and com- 
petitive learning approaches in the identification of the 
mixing matrix for both sensor-sufficient (as many sensors 
as sources) and sensor-deficient (less sensors than sources) 
cases. 

1. INTRODUCTION 

The previous research in blind source separation of 
speech signals relied on model-based approaches with dif- 
ferent types of assumptions such as: assumption on the 
underlying source distribution. [ 1,2]; joint covariance and 
cumulant matrices diagonalization [3, 41. The search for 
correlation matrices with distinct eigenvalues has been 
studied in [5] and applied using segmentation in time [6] 
or time frequency windowing [7]. 

Instead of the statistical model-based approach, non- 
parametric linear feature extraction applied to blind source 
separation has recently drawn some attention. The equi- 
partition method [9] and the local geometric approach [lo] 
explore the intrinsic local structure of the source signals. 
However, although these two papers discovered the impor- 
tance of energy disparity in the data, they still treated all 
data equally without emphasizing the data segments which 
provide the most important information about the underly- 

ing mixing matrix. In addition, exhaustive competitive 
learning was used and hence the mixing matrix could not 
be estimated very precisely all the time. 

Neurophysiological evidence shows the important role 
played by the speech time-frequency microstructure in the 
way humans recognize and separate different voices (the 
cocktail party effect [8]). Therefore, in this paper we 
explore the short-time time-frequency structure to enhance 
the dominant speaker within each time-frame, which leads 
to the estimation of the independent component coordinate 
system. We show that sub-band filtering within each short- 
time window cleans the scatter plot of the sensed signals 
and makes the underlying features (independent compo- 
nent bases) easier to estimate; moreover by choosing the 
“most important features” instead of “averaging after clus- 
tering” as done in competitive learning, we may estimate 
mixing parameter much more precisely and much faster. 
In this paper we deal with blind source separation of sev- 
eral speech signals in a noise-free environment. 

2. PROBLEM STATEMENT 

The problem of blind separation of independent sources 
can be formulated as follows. A vector of m input signals 

x(t) E Rm is composed from a a vector of independent 

sources s(t) E R” as 

x(t) = LA[d01 (1) 

where A parameterizes a family of invertible mixing maps 
LA, and t denotes time. The problem is to reconstruct A (or 

find the inverse of A directly) and the original sources s(t) 
from the given input x(t).The sources s(t) can at best be 
reconstructed up to a permutation and scaling. We will 
assume all the signals to be zero-mean. 

If we consider instantaneous mixtures only, we have 
x(t) = As(t), or equivalently, 
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where A is a m x n matrix. If we would like to recover 
the signal, the number of sensor m should be larger than or 
equal to n. However, instead of the source recovery, it is 
possible to estimate the mixing matrix A even for m C n. 

3. SOURCE SEPARATION BY FREQUENCY 
DECOMPOSITION 

It is enlightening to analyze how we can use sub-band 
information for source separation instead of segmentation 
in time [6]. For simplicity, we consider a speech mixture 
with two sources and two sensors. The following proper- 
ties are well known and easy to prove: 

1. The convolutive operator and scalar multiplication 

are associative, i.e., xR(t) 8 h(t) = (uklsl+aMs2)C3 

h(t) =uklsl C4 h(t)+ak2s2 63 h(t). where x&) is the kth 

element of vector x(t) and ski is the kth element of 

vector Uj in Equation (2). 

2. Assume two independent sources Si(t) and s,(t). If 

yxt) = si(t) 63 h(t), z/(t) = s,(t) C3 g(t) are formed by 

linear convolution with two different FIR filters the 
statistical average cross-correlation E { yi(t) z,(t)} = 0 

since E {sz{t-p) s,(t-q)} = 0, Vi #j and Vp, q . 

From Property 1 and 2, we can obtain the following : 

3. If we define y(t) as s(t) 8 h(t) (each element s,{t) 

convolved by the same filter h(t) ) and E{s(t)sr(t)} is 

diagonal, then E { y(t) UT(t)} is also diagonal. 

Property 3 tells us that we may also achieve blind source 
separation by extracting different covariance matrices 

E{Ay(t)yT(t)AT} in different subbands (i.e. through differ- 
ent filters h(t) ). Since the unique solution occurs only 

when we have distinct source energy ratios ( ECyi2(t)} / 

E{sf(t)} ) [5], how to choose the subband filters still 

remains an open question. 
Instead of the exhaustive search for subband filters, we 

propose a generalized eigenfilter method to choose the 
subbands as follows: 

If rl{r) is the auto-correlation function of the i’ sensed sig- 

nal, we can construct the correlation matrices, 

Ri = 

I 

ri( 1) ri(0) . . .., (3) 

. . . . . . . . . . . 

ri(L- I) . . . . . . ri(0) 

The generalized eigenfilters are unit gain filters which 
maximize or minimize the Rayleigh quotient as, 

i;R,2 
7; = argmax(argmin) - 

i;R,JIT 
(4) 

where i = (h(O), . . . . k(L - 1))r is the eigenfilter. If 

we denote the mixing matrix A as ., we obtain 
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since h(t) has unit gain. (5) 

Equation (5) shows that the eigentiltering can only 
“reduce” the source energy by eliminating the information 
in some frequency bands. 

The performance surface of the minimax problem in 
Equation (4) is hard to analyze and it is still under investi- 
gation. Alternatively we can use an extreme case of the 
surface plot to explain the optimization procedure. In Fig- 
ure 1, we can see that the global optimal points occur in 
the two vertices with highest and lowest energy ratios. 
Hence the minimax procedure in Equation (4) will search 
the maximum or minimum ratios in the confined region by 
the unit gain filter h(t). 

Figure I. The ratio surface plot for Equation 4. 



4. LOCAL GEOMETRICAL STRUCTURE IN 
TIME 

We will discuss below the temporal information which 
enables the estimation of the underlying mixing matrix. If 
we consider a nonsingular mixing matrix A in Equation 
(2), the column vectors ai‘s define an independent compo- 

nent coordinate system where the Ui’S are in general not 

orthogonal. For the mixing model of Equation (2), the 
source signal amplitudes are the components of the input 
in the independent component coordinate system. We will 
call disparity the ratio of the amplitudes in the principal 
component system. 

Since speech is composed of nonstationary segments 
(vowels, consonants and silence intervals) with different 
amplitudes, disparity over time will naturally occur in 
speech of different speakers. For instance, within some 
time-frame, one speaker articulates a vowel (with rela- 
tively higher energy) and others may articulates fricatives 
(with relatively lower energy) or be silent; during that time 
only one source si(t) has large amplitude swings, so the 

mixed signal will fall predominantly along a line parallel 
to ai. We may use subband filters to enhance the energy 

ratio between the dominant source and the other sources. 
Figure 2a shows the scattering plot of two mixed speech 
signals, we can directly observe that the extreme points are 
nearly coincide with the underlying mixing vectors Ui‘s 

(denoted by the two lines in the graph). 

5. PROCEDURE FOR ESTIMATING THE MIX- 
ING MATRIX 

As depicted in Figure 3, our procedure to estimate the 
mixing matrix A (for two sensors) can be described as fol- 
lows: 

Time-frequency Decomposition: 
1. Use short time analysis (sliding window of 20 msec). 
2. Compute eigenfilters hi(t) and h,(t) (Ad(t) and /q(t)) to 

maximize and minimize Equation (4) and filter the 
mixed input through both subbands of each sensor 
(filter length 30 around taps). 

3. Use PCA to estimate the spatial direction of the mix- 
ing vectors. 

Feature estimation: 
4. Running the frame analysis we collect a set of PCA 

directions from each subband and each sensor. We 
further cluster the PCA estimates in the number of 
expected sources using competitive learning. We 
then choose those estimates corresponding to the 
largest eigenspread in each cluster. 

5. The separation matrix B is computed by B = A-’ . 

Figure 2a. The waveform (scatters) of two mixed signals 

Figure 2b. The scattering plot of’two mixed signals 
(through maximum generalized eigen filtering) 

Figure 2c. The scattering plot of two mixed signals 
(through minimum generalized eigen filtering) 

Figure 3. The estimation procedure for mixing matrix A 

6. SIMULATION 

6.1 The thining effect of subband filtering by general- 
ized eigenfilters 

In order to observe the “thining effect” as previously 
discussed in Section 3 we filter the mixed signals of Fig- 
ure 2 by both generalized eigenfilters h,(t) and h*(t) (with 



500 taps for illustration purposes). The corresponding 
scattering plot is depicted in Figure 2b and Figure 2c. 
They show that the appropriate subband filtering will 
enhance the identifiability of the mixing matrix. 

6.2 Equal number of Sensors and Sources 
The mixing matrix for data depicted in Figure 2a is 

(6) 

First we follow the procedure in Section 5 to obtain a set 
of PCA estimates. We may either use a running average of 
eigenspread values to threshold those PCA estimates with 
a “large enough” eigenspread, or just sort the whole set of 
estimates to obtain “the best ones”. In Figure 4 we can see 

that the estimates &‘s (denoted by the circles) are located 

at the directions of the true underlying vectors ai‘s (their 

directions are denoted by the lines). After clustering and 
using the “best estimates” (with largest eigen-spreads) the 
final separation-mixing matrix product is 

(7) 

and the average SNR is 58.12 dB. Compared to the exist- 
ing gradient and numeric algorithms, the performance is 
remarkable. 

6.3 More sources than sensors 
With the two sensors, if we consider more sources in 

the linear mixture (for instance, four sources) 

A= 0.9501 0.6068 0.8913 0.4565 1 0.23 11 0.4860 0.7621 0.0185 ’ 
(8) 

we may still identify all the four mixing vectors a,‘~ . The 

result is shown in Figure 5, where circles denote the esti- 
mated directions and lines denote the true directions. The 
four angular errors lie between 0.0583 w 0.6575 degrees. 

7. CONCLUSION 

We explored the time-frequency structure of speech for 
source separation. The angular estimation of mixing vec- 
tors is strikingly precise. However the choice of subband 
filters still remains an open area for research. 
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The estimated directions and 
vectors for 2-sensor-2-source 
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case. 

"r-e 

4 II 
-15 -, 45 0 0, 

Figure 5. The estimated directions and true mixing 
vectors for 2-sensor-4-source case. 
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