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A bshct- 
In this paper, we introduce a new approach, called 

nonstationary adaptation (NA), to recognize speech 
under nonstationary adverse environments. Two mod- 
els are used: one is a speaker-independent hidden 
Markov model (HMM) for clean speech, the other 
is an ergodic Markov chain representing the non- 
stationary adverse environment. Each state in the 
Markov chain represents one stationary adverse con- 
dition and has associated with it an afflne transform 
that is estimated by maximum likelihood linear regres- 
sion (MLLR). Three kinds of adverse environments are 
considered: (i) multi-speaker speech recognition where 
speaker identity changes randomly and this constitutes 
a nonstationary adverse condition, (ii) the recognition 
of speech corrupted by machinegun noise, (iii) the 
cross-talk problem. The algorithm is tested on the 
Nov92 development database of WSJFO with a vocab- 
ulary size of 20,000. In multi-speaker speech recogni- 
tion, NA decreases the error rate by 13.6%. For speech 
corrupted by machinegun noise, a one-state Markov 
chain decreases the error rate by IS%, and a two-state 
Markov chain gives another 14% decrease in error rate. 
In the cross-talk problem, a one-state Markov chain 
decreases the error rate by 16.8%. Two-state and three- 
state Markov chains decrease the error rate by 22% and 
24.4%, respectively. 

I. Introduction 

Current, speech recognizers can achieve very good 
recognition accuracy in the laboratory [l] [2]. How- 

ever one problem that prevents them from being ap- 
plied commercially is that they are very sensitive to 
adverse conditions such as additive noise, channel dis- 
tortion, speaker variations, etc. [2] [3]. 

The past two decades have witnessed grea.t ad- 
vances in the recognition of speech under adverse 
environments. These approaches can be categorized 
into robust speech analysis [4], speech enhancement, 
[3][5], the use of robust dista.nce measures [6], model 
compensation and adaptation [7][8][9][10][11], etc. 
However most of these techniques concentrate on sta- 

tionary or slowly varying adverse conditions such as 
car noise, operation room noise, et.c. 

In this paper, we present a new model combination 
t,echniquct for the recognition of speech under non- 

stationnry adverse environments. In this approach, 
the memory requirement for the corrupted speech 
model is almost the same as for the clean speech 
model. Model paramet.ers needed to recognize cor- 

rupted speech are calculated on-line at, a reasonable 

computational cost;. Two assumptions a.re ma.de in 

this approach: 

1 A nonst.ationary adverse environment can be 
partitioned into a finite number of stationary 

events and each such event. can be represented 
by one state of a Markov chain. 
When clean speech is corrupted by a stationary 
adverse event, the clean speech model parame- 
ters can be adapted through an afinc transform 
of the mean vect,ors. 
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Based on these two assumptions, we introduce two 
models: one is a. clean speaker-independent, HMM 
that represents the speech signal to be recognized, 
another one is a Markov chain that, represents the 
nonstationary adverse environment. In t,he model of 
the adverse environment, we cannot. generally prc- 
diet which state will follow another one at a specific 

time; so the corresponding Markov chain is an er- 
godic one. When clean speech is corrupted by an 
event. that, belongs to a state m of the Markov chain, 

the means of the corrupted speech model are obtained 
from those of the clean speech model according to the 
affine transform: 

p(m, c) = A(m)p(c) + B(m): (1) 

where m. = 1: 2:. . . , M and -111 is the total number of 
states of the Markov chain, c: is the index of a mix- 
ture component, IL(C) is a mean of the clean speech 

model and ~(m, c) is a mean of the corrupted speech 
model corresponding t,o stat.e m of the noise Markov 
chain. The variance of the mixture components of 
the corrupted HMM is assumed t,o be the same as 
the clean HMM, since it, has been widely report.ed [9] 
that. variance adaptation gives little improvement, in 
recognition accuracy. We call t,his approa.ch nonsta- 

tionury ndqtution (N-4). 

IKA is applied to three kinds of nonstationary ad- 
verse environments. The first is multi-spea.ker speech 
recognition where we use a speaker-independent. 

model for clean speech to recognize speech spoken 
by several known spea.kers. Since the best, recogni- 
tion result is obtained by using speaker-dependent, 
models, the speaker-independent model introduces 

some degradation for each speaker compared with a 



speaker-dependent model. Such degradation result- 
ing from the ignorance of the speaker identity con- 
stitutes the adverse condition. Since speaker identity 
changes randomly, t,he adverse condition is nonsta- 
tionary. The second is the recognition of speech cor- 

rupted by machinegun noise [13], which is a typical 
nonstationary noise. The third is the cross-talk prob- 
lem where the background noise is a speech signal, 
which is a quite nonstationary signal. 

II. Implementation of the algorithm 

A very large vocabulary continuous speech recog- 
nition system usually includes two passes. In the 
first, pass, a coarse language model and a set of 

coarse acoustic phonetic models are used to gener- 
ate all recognition hypotheses that have high scores. 
These recognition hypotheses are represented by a 
word graph. There is a one-to-one correspondence be- 
tween paths through the word graph and recognition 
hypotheses. In the second pass, a fine language model 
and a set of fine acoustic phonetic models are used to 
restore all these hypotheses. The search space of the 

second pass is the word graph that was generated in 
the first pass. 

The experiments described in this paper are second 

pass experiments, using a fixed word graph for each 
test sentence. The acoustic phonetic model in the 
second pass is adapt,cd to the corrupted speech model 
via the set of afine transformations corresponding to 
the Markov chain of the adverse environment. 

Let 1: m denote st.ates in the Markov chain, and 
let i: j denote states in the clean speech HMM. The 
forward probability, cu(i, m, t), of the observation se- 
quence 01 .. . ot, the HMM state i, and the Markov 
chain state m is calculated by 

n(j, m, t) = C C cr(i. 1, t - 1) . aij . cllrL bj,,(ot) 
i 1 

where ai, and clnl are state transition proba.bilities 
of the speech model and the Markov chain, respec- 
tively, and !+(ot) is the probability of emitting vec- 
tor ot when the clean speech state j is corrupted bj 
an event that belongs t,o the XIarkov chain stat.e m. 

The calculation of hjm(ot) is the same as in clean 

speech recognition except that the mean vector /l(c) 
is replaced by p(m, c), as illustrated by equation (1). 
In Viterbi decoding, the forward proba.bility is calcu- 

lated according to 

&, m, t) = maxmFx[cy(i, 1, t - 1) . nij . clnl . bj,,(ot)]. 
i 

In the Markov chain, WC assume all intra-stat,e tran- 
sition probabilities to be one and all inter-state transi- 
tion probabilities to be a constant, C whose value can 
be either larger or smaller than 1. If C is less than 1, 
it, encourages intra-state transitions and discourages 
inter-st,atc transitions. We call 1ogC t.o be an inter- 
state trunsition penalty or a briefly just penalty. 

A. Computational overhead 

In the INRS continuous speech recognition system, 
all distribution components share a full covariancc 
matrix. In noisy speech recognition! the rotation ma- 
trix of the affine transforms can be absorbed by t,he 

covariance matrix and the likelihood expression is al- 
most the same as in the clean speech recognit.ion. If 
the adverse environment is represented by a.11 M-state 
Markov chain; each time a frame is read! a score 
vector of A4 components has to be CdCllli1tCtl with 
each component representing a score if the speech is 
corrupted by an event, belonging to one st,ate of the 
Markov chain. So likelihood computation overhead 
is M times as much as in clean speech recognition. 
While maintaining reasonable computation overhead, 
NA keeps the memory requirement almost the same 
as for clean speech recognition. 

B. Adaptation parameter estimation 

The affine transformation parameters are esti- 
mat.ed by maximizing t.he Baum-Welch auxiliary 
function [ 121. Denote 

where o(t) is the observation at time t, Y,~,~,~ (t) is the: 
the a posteriori probability of occupying HMM state 
s and Markov chain state m. a.t time t given t.hat. the 
observation sequence 0 E 01 ‘0~ is generated, and 
let 

SI (7n) z SMM(~~J.) - rcnxj SM(m,)ST, (ml, I 

Sa(m) f so~f(7n) - *So(nL)SL(7r~). 

the parameters of the affine transform corresponding 
t,o sta.te nz of the Markov chain are represented by 

A(m) = Sz(m)S;’ (m) 

and 

where m = 1,2....!114. 

III. Experiments 

The algorithm is tested on t,hc Nov92 development. 
database of WSJFO which contains 16, 14, 17 and 
14 sentences for four female speakers spk050, spk053, 
spk420 and spk421, respectively. Since t,he word 



Fig. 1. Four-speaker error rates. Horizontal lines represent 
error rates obtained by using a speaker-independent model. 
Curves represent error rates in the multi-speaker speech 
recognition approach. 

graph is given in the second pass experiment, even 
if the a.coustic phonetic score in the second pass is set, 
to 1 for each frame, we can also get a word accuracy 
of 83.5% which can be regarded as the base-line score. 

A. Four-speaker speech recognition 

In four-speaker speech recognition, we study the 
recognition of speech spoken alternately by four 
speakers by using NA. The ergodic Markov chain 

has four states and the penalty is called the speaker 
penalty. 

Fig. 1 shows t,he word error rate of each speaker 
and their average as a function of the speaker penalty. 

We find that the average word error rate is 9.1% when 
a speaker-independent, model is used. However, when 
the speaker-independent model is adapted by NA and 
the speaker penalty is set, to about, -100, we get the 
minimal word error rate for each speaker and the cor- 

responding average word error rate is 7.9%, a 13.6% 
improvement with respect to that, obtained using t,he 
speaker-independent model. 

The error rate of spk050 in the multi-speaker 
speech recognition strategy is higher than that ob- 

tained using the speaker-independent rnodel for all 
values of the speaker penalty. This shows that NA 
cannot, guarantee recognition improvement, for each 
spea.ker, especially for those speakers whose error 
rate is already very low when using the speaker- 
independent, model. This is caused by speaker mis- 
identificat,ion clue to the NA algorit,hrn. 

B. Speech corrupted 6y mnchinegun noise 

When speech is corrupted by machinegun noise, the 
noisy speech is described by an HMM for clean speech 
and an ergodic Markov chain for the noise and the 

Fig. 2. Error rates for spkO50 under machinegun noise. Hor- 
izontal solid lines are error rates obtained by using the 
speaker-independent model for clean speech. Ho&on- 
tal dashdotted lines indicate error rates when the noise 
Markov chain has one state and curves indicate error rates 
when the noise Markov chain has two states. 

penalty is called the noise penalty. It. is natural t:o 
describe the machinegun noise as a Markov chain wit,h 
two states - one state for silences and the ot,her for 
bursts. 011 the other hand, if the machinegun noise is 
treated as stationary noise, the corresponding Marko\ 
chain has only one state. In this case, there will be 
no inter-state transition, and hence no noise penalty. 

Fig. 2 shows error rates of spk050 when her sen- 
tences are corrupted by additive machinegun noise at 
SNRs of 12 ciB> 6 dB, 0 dB and -6 dB respectively. It, 
is found from Fig. 2 that. even if the machinegun noise 
is regarded as stationary noise and is represented by 

a one-state Markov chain, error rat,es can bc great,ly 
decreased. However, when the machinegun noise is 
represented by a Markov chain of two states, t,hc er- 
ror rat.e strongly depends on t.he noise pena1t.y. It is 
consistently found that, when the noise penalty is bo- 
tween 20 a.nd 40: the error rates reach t.heir rninimal 
value which, compared with the results of a one-stat.c 
Markov chain, lead to further substantial decrease. 
Table I lists error rate irnprovcments by using KA. 
\$‘hen the rnachincgun noise is treated as a st,ation- 
ary noise (one-state Markov chain), the average im- 
provement, is around 18%. Q’hen it. is represented by 
a two-state Markov chain, the average improvement 
is around 32%. This shows the nonstationary charac- 
teristics of machinegun noise and the effectiveness of 
NA in the recognition of speech under nonstationa.ry 

adverse environments. 

C. Cross-talk problem 

As a preliminary step for the application of KX 

to the cross-talk problem! t,he experiment, is designed 
with t.hc following assumptions: (i) The background 



improvement 
SNR. one state t,wo states 

12 dB 14.9% 28.4% 

6 dB 22.7% 34.1% 

0 dB 19.6% 30.9% 

-6 clB 17.2% 35.3% 

Average 18.0% 32.0% 

TARLE I 

ERROR RATE IMPROVEMENT RY SUING A ONE- AND A 

TWO-STATE NOISE MARKOV CHAIN WHEN THE SPEECH IS 

CORHllPTED HY TIl15 MACHINRGIIN NOISE. 

speech is spoken by a single speaker; (ii) The back- 
ground speech is spoken by the same speaker in the 
testing and t,he adaptation data. Also we only COII- 

sider the case where the SNR is 6 dB for the speech 
of all four speakers. When the speaker-independent 

rnodel is used without adaptation, the average word 
error rate is 20.2%. However, even if we regard the 
background speech as stationary noise, in which case 
the Markov chain has only one state, we found that, 
the average word error rate is decreased by 16.8%. 

When a multi-state Markov chain is used! the way 
the phonemes are clustered into different states is cru- 
cial to the final recognition rate. We found that the 
best two-state partition is to clust.er all vowels and 
consonants into one state and the silence itself into 
the other state. The average word error rate is dc- 
creased by 22.0%. 

If a. three-state 14arkov chain is used, a series of 
experiments showed that the best three-state parti- 
tion of all the phonemes is to cluster all vowels into 

one state, all consonants into another stat.e, and the 
silence itself into the third state. The error rate is 
decreased by 24.4%. Figure 3 represents the error 
rates as a function the noise penalty in t.he cross- 
talk problem. LVhen we further differentiate these 

phoneme classes into more stat,cs: litt.le improvement. 
is obtained in recognition rate. 

IV. Conclusion 

In this paper: we have introduced a new approach, 
nonstationary adaptation, for speech recognition in 
nonstationa.ry adverse environments. While greatly 
decreasing the word error rates in various nonst,ation- 
ary adverse environments, t,hc computational cost, of 
our algorit,hm is reasonable and the memory requirc- 
ments are almost the same as those of clean speech 
recognit,ion. 
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