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ABSTRACT 

According to discourse theories in linguistics, conversational 
utterances possess an informational structure that partitions 
each sentence into two portions: a “given” and “new”. In 
this work, we explore this idea by building sub-sentence dis- 
course language models for conversational speech recogni- 
tion. The internal sentence structure is captured in statistical 
language modeling by training multiple n-gram models us- 
ing the Expectation-Maximization algorithm on the Switch- 
board corpus. The resulting model contributes to a 30% re- 
duction in language model perplexity and a small gain in 
word error rate. 

1. INTRODUCTION 

Numerous researchers have worked on building statistical 
language models using topic, discourse or dialogue struc- 
ture for speech recognition and spoken language understand- 

ing [4, 5, 81, with a focus on modeling structures that oc- 
cur at the sentence level or higher. In this work, we aim 
at building language models that capture dialog structure at 
the sub-sentence level, to reduce language model perplexity 
and word error rate for conversational speech recognition on 
the Switchboard corpus. 

This work is motivated by suggestions from discourse 

theories in linguistics that conversational sentences not only 
have a syntactic structure, but also an information struc- 

ture, consisting of two parts: a “given” and “new” [ 1, 31. 
The “given” part typically occurs at the beginning of a sen- 
tence where there is less informational content, whereas the 

“new” tends to occur towards the end where most of the new 
information is being conveyed. 

In Section 2, we present some preliminary data analy- 
sis based on the given-new idea on the Switchboard corpus. 
Section 3 describes our proposed statistical sentence model, 
as well as the training procedure. Recognition and perplex- 
ity results and conclusions are in Section 4 and 5, respec- 
tively. 

Table 1: Use first strong verb of sentence as pivot in dividing 

a sentence into a “before” and an “after” part. 

BEFORE PIVOT 1 AFTERPIVOT 1 

1 That’s I a eood ooint. I 
1 But, uh, other than that ) depends on how 1 

I think maybe it just 1 you define honesty. 
That’s a int-, you know, that’s 1 interesting. 

2. PRELIMINARY ANALYSIS 

2.1. Background 

The concept that a conversational utterance is comprised of 
two distinct parts was first explored by Meteer in [6] for the 
purpose of speech recognition. There, the authors worked 
with linguistic clauses, and divided each utterance into two 
portions, a “before” and an “after”, by pivoting on the first 
strong verb of each sentence as shown in Table 1. They ob- 
served differences in vocabulary frequency and dysfluency 
distributions, and conducted a set of bi-gram perplexity ex- 
periments that suggested the structural differences between 
the two portions of a sentence. 

2.2. Perplexity 

In this work, we begin with a similar set of perplexity ex- 
periments, except we train and test only on sentences that 
have a pivot point, use tri-gram models and a slightly larger 
training set. We also eliminated artifacts due to sentence 
boundary markers that would bias perplexity results. For 
example, a 5-word training sentence can be represented as 

Full: <b> wl w2 (~3) w4 w5 <e> 
Before : <b> wl w2 (~3) <e> 
After : <b> (~3) w4 w5 <e> 

where (~3) is the pivot verb. In testing, we discount the contri- 
bution made by the end of sentence boundary marker <e>, and the 



begin of sentence boundary marker <b> for the “Before” and the 
“After” segments, respectively: 

Full: <b> wa wb {WC) wd we <e> 

Before : <b> wa wb (WC) 
After: (WC) wd we <e> 

The perplexity results are shown in Table 2. Three trigram 
language models are trained; one on full sentences, one on the 
“before” portion only, and one on the “after” portion only. Each 
of the trigram language models is then tested on a full sentence, a 
‘before”, and an “after” lest set. The experiment was carried out on 
the manually annotated and linguistically segmented Switchboard 
data obtained in the 1995 Language Modeling workshop al Johns 
Hopkins. 

From the table of perplexity numbers, we see that even though 
having a smaller training set hurts (81 + 86) the “Before Pivot” 
performance, it is out weighed by the gain (145 + 114) observed 
on the “‘After Pivot” performance. This indicates that modeling 
the “before” and “after” parts of a sentence separately reduces per- 
plexity despite partitioning of the training data, which suggests 
potential recognition gains. 

Table 2: Trigram perplexity on linguistic data. 

2.3. Word Recognition 

We further tested this idea by building a two-state sentence model 
(Figure I), where the “before” state represents the “given,” or ear- 
lier part of a linguistic sentence, while the “after” state models the 
“new,” or latter part of a linguistic sentence. We trained and tested 
this model via n-best re-scoring on linguistic data and obtained 
a 0.4% reduction in word error rate. This trial confirms that one 
could indeed take advantage of the internal given-new sentence 
structure for the purpose of speech recognition. 

Figure 1: Model for linguistic sentence. 

This proposed model is ideal for representing linguistically 
segmented data with complete clauses. It fails, however, to model 
acoustically segmented speech data, which we need to use for 
training and testing our speech recognizer. In acoustic segmenta- 
tion, speech waveform is segmented according to simple acoustic 

---_. ._-.- 

Figure 2: A Four State Sentence Model. 

events such as filled pauses, non-speech elements and turn bound- 
aries. 

Generating acoustic segmentation is inexpensive and fully au- 
tomatic, however, obtaining good linguistic segmentation bound- 
aries is still an ongoing research topic [2, 71. Rather than rely- 
ing on errorful linguistic segmentations, we chose to extend our 
2-state model to handle arbitrary utterances not necessarily occur- 
ring in the rigid “given” followed by “new” structure. We devel- 
oped a training and testing-procedure that automatically extracts 
the “given” and “new” part of the sentence structure from acous- 
tically segmented data. In the following sections, we experiment 
with three sentence models, each allowing a higher degree of flex- 
ibility in informational structure. 

3. FLEXIBLE SENTENCE MODELS 

3.1. A Four State Sentence Model 

In order to work with acoustically segmented data, we adapted a 
model that allows the following utterance structure: 

B-A: (it's a it's) (a fairly large community) 
A-B: (raise those children) (and and now . ..) 
A only: (supposed to be a great baby-sitter) 
B only: (you know so that's that's that's) 

Such a flexible multi-state model is shown in Figure 2, and is 
trained as shown in Figure 3. To begin, we use some linguis- 
tically segmented sentences lo bootstrap our automatic training 
procedure. As in Meteer [6], we partition each linguistic sen- 
tence into a “before” and an “after” portion by pivoting on the 
first strong verb, then use each subset lo train a "before" and an 
“after” n-gram language model, respectively. We use each n-gram 
to compute the emission probabilities of its corresponding states 
in Figure 2. The arcs in the diagram simply depict allowable state 
transitions; they have no probability mass. Once the initial mod- 
els have been trained, they are re-estimated via the Expectation- 
Maximization (EM) algorithm using the acoustic segments. Let 

T- 
Wl - {WI, wz, . . . . WT} be the utterance string. Following slan- 
dard forward-backward computation for HMM, the language model 
weight for each n-tuple, wi-,,+I = {wit-,-,+I, . . . . wt}, and for 
each state, k E {Before, After}, is updated as, 

&&“+l) = P(st = k / w;,e'-') 

= at @Mw) 

Cj QIT(j) 



All Available 
Training Data 
( Arbitrarily 

Segmented) 
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Figure 3: System Overview. 

where, 

at(k) = Cat-l(j)P(wt,st = k (w:I~,st-l = j,O'-') 

LA(k) = C LJt+l (jP( wt+l, st+l = j I &,+I, st = hOi-‘) 

where s, j E {Before, After} are the state variables, 0’-’ is the 
sentence model and PL’(.) is the n-gram probability evaluated 
with n-gram M E {Before, After} obtained from EM iteration 
i- 1. 

Using EM allows us to automatically extract the “given” and 
“new” part of the sentence structure from arbitrarily segmented 
data and re-estimate a new “before” and “after” n-gram model in 
a maximum likelihood manner. Furthermore, the two resulting n- 
gram models are smoothed in the sense that each n-gram model 
was re-estimated using all the training data rather than from a sub- 
set of the data. Hence, the “before” model is updated with a small, 
but non-zero, weight for n-tuple that are unlikely to occur in the 
“before” part of a sentence. In addition, using EM training, we 
smooth over the assumption of pivoting at the first strong verb. 
This training step can be repeated as many times as needed. We 
found that the system usually converges within 3 iterations. 

In testing, we use the resulting sentence model to re-score the 
n-best hypothesis of the decoder output by computing the likeli- 
hood score of each sentence hypothesis given the model, which is 
simply 

3.2. A Six State Sentence Model 

The four-state sentence model attempts to represent speech seg- 
mentsoftheform before,before-after,after, and 

after-before. It is, therefore, inadequate for modeling com- 
pound sentences such as: 

We found this one area that doesn't have 
mosquitos they just don't have them and 
it's just wonderful . . . 

In the six-state sentence model, we simply extended our exist- 
ing topology for one extra level of flexibility by adding two more 
states so as to also model segments of the form 
before-after-beforeandafter-before-after. 

3.3. Unconstrained Sentence Model 

Finally, we developed an unconstrained sentence model that allows 
an unlimited number of state transitions, as shown in Figure 4, with 
parameter p and q as the state transition penalty. 

Figure 4: Unconstrained Sentence Model. 

4. EXPERIMENTAL RESULTS 

To build the initial “before” and “after” n-gram models, we use 
1.3 million words of linguistically segmented Switchboard data 
obtained from the 1995 Language Modeling workshop at Johns 
Hopkins. For subsequent EM iterations, we use all the available 
Switchboard and Callhome English training data. This training set 
is automatically segmented by NIST. and comprises more than 3 
million words. We use trigram as our building blocks for all the 
sentence models. Our test set is the development set defined by 
NIST for the Spring 1997 Large Vocabulary Speech Recognition 
Evaluation. It consists of 7 Switchboard and 7 Callhome English 
conversations for a total of 13k words. 

The results are shown in Table 3. The baseline system yields 
a 35.94% word error rate. This is simply the error rate of the I- 
best hypothesis from the decoder. The baseline perplexity is from 
the decoding language model, a monolithic trigram trained on the 
same 3 million words of acoustically segmented data. The 4-state 
sentence model gives a significant drop in trigram perplexity, and 
a slight improvement on word recognition error rate via n-best re- 
scoring. Note that in Table 3, “iter0” is the initial sentence model 
with no EM training, “iterl” is after 1 iteration of EM training, 
and so forth. All the perplexity numbers reported in this paper are 
from the third EM iteration and are based on the likelihood score 
of the best word path (as opposed to the sum of all paths) through 



the sentence model. This is done so that the perplexity numbers 
across different sentence models are compatible with each other 
and to that of the baseline trigram model. 

The 6-state sentence model provided an additional drop in 
grammar perplexity but not a significant change in word recogni- 
tion error rate. The additional gain of allowing a more flexible sen- 
tence topology suggests that we should reformulate our sentence 
model to allow an unlimited number of state transitions, maybe at 
the expense of over generalization. This leads to our final uncon- 
strained sentence model. Thus far, the resulting performance did 
not make a significant difference whether the state transition prob- 
abilities, p and q, are updated via EM or are fixed at 0.5. This new 
model gives us an additional gain in perplexity, but not so much in 
word recognition error rate. 

Overall, we obtained a slight improvement of 0.26% in word 
recognition error rate in using our proposed sentence models for 
n-best re-scoring. From Table 3, we see that half of the improve- 
ment can be obtained without running EM training, but in order to 
compute the likelihood score of the initial sentence model given 
the test utterances, an underlining system still needs to be imple- 
mented. 

The three sentence models give similar performance in terms 
of word recognition error rate. In examining the Viterbi state align- 
ment of the sentence string with the models, however, we found 
that the unconstrained model was able to represent compound sen- 
tences with fairly accurate state transitions, and thus it is our pre- 
ferred system. Since our sentence model operates on the decoder 
output, its current performance may be hampered by the high base- 
line word recognition error rate. Therefore we believe that it will 
become more effective as the underlying performance of the de- 
coder improves. Another source of sub-optimality is that our mod- 
els were trained using all the available data, which includes a sub- 
stantial amount of back-channel utterances that dilute the “before” 
and “after” n-grams. To separate back-channel phrases, we could 
simply add an extra back-channel single-state path to our current 
model, then train via EM, or we could rely on using discourse pre- 
diction algorithms that in addition use acousIic cues. 

Table 3: Word error rate from N-best re-scoring using sen- 

tence model. Iter refers to EM training iterations. 
Model IterO 1 Iterl 1 IteR 1 Iter3 PP 

Baseline 35.94 156 

Cstate Sent. Model 35.81 35.82 35.78 35.77 121 
6-state Sent. Model 35.81 35.81 35.77 35.71 115 

Unconstrained Model 35.85 35.81 35.74 35.68 108 

5. CONCLUSION 

We have presented the motivation, the system implementation, and 
experimental results for building language models based on mod- 
eling internal sentence structure. According to linguistic discourse 
theories, conversational utterances contain a given-new informa- 
tional structure. This theory is supported by statistical data analy- 
sis and perplexity experiments carried out on the linguistically seg- 
mented Switchboard data. To take advantage of this internal sen- 
tence structure for conversational soeech recoenition. we Drowsed 

a training procedure that automatically extracts the “given” and 
“new” parts of the sentence from acoustically segmented speech 
utterances, and experimented with a few sentence models. Our 
results show that our given-new language model is a better fit to 
Switchboard conversational speech than a generic language model, 
‘as indicated by the decrease in both perplexity and word recogni- 
tion error rate. 
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