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ABSTRACT 

We present, in this contribution, some aspects of nongaussian 
H-ARMA models. After recalling that an H-ARMA process is 
obtained by passing an ARMA process through a Hermite poly- 
nomial nonlinearity, we describe the theoretical analysis of their 
cumulants and cumulant spectra. The main advantage of this kind 
of model is that the cumulant structure of the output can be de- 
duced directly from the input covariance sequence. We give the 
analytic forms of these cumulants, together with some comments 
on their estimation. Then, we present the problems we are facing 
concerning the identification of the model’s parameters, and give a 
first (and naive) method for their estimation. We give some results 
obtained on synthetic data and finally conclude with some remarks 
on this class of processes. 

1. BRIEF PRESENTATION OF H-AR-MA MODELS 

H-ARMA models have been introduced in [I] with a detailed 
study of the estimation of their polycovariances. The mean of gen- 
eration of a H-ARMA process is twofold. Having a stationary 
white gaussian input with zero mean and unity variance, we first 
obtain a colored gaussian ARM.4 process with a linear filter and 
then we apply it to an instantaneous nonlinear filter in order to 
generate a nongaussian behaviour. The choice of the nonlinearity 
is obviously crucial to provide an efficient modelisation of vari- 
ous nongaussian behaviours. A polynomial nonlinear filter sat- 
isfies this condition and allows to derive theoretical results con- 
cerning the cumulants and the distribution of such processes, what 
is useful to build identification methods. First, we have worked 
on the simplest polynomial - a square - and the results we have 
obtained [2] led us to consider Hermite polynomials as an exten- 
tion. The nonlinearity of H-ARMA models is therefore a linear 
combination of Hermite polynomials of various degrees to which 
we will refer as Hermitejlter (cf. figure 1). The equation of an 
H-ARMA(P,p, q) model is given by 

(1) 
k=l 

?J[71] = f: aiy[72 - i] + 2 bjZ[n - j] + z[n] (2) 
i=l j=l 

where z[n] is a stationary white gaussian noise. 
Because nongaussian processes can not be identified only with the 
covariance function or the spectrum, we need for that purpose, an- 
alytic expressions of higher order cumulants or cumulant spectra. 
The use of Hermite polynomials ensures that we have access to 
tractable - and sometimes simple - expressions for the cumulants 
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Figure 1: generation of H-ARMA models 

of our models at any order. Moreover, these expressions depend di- 
rectly from the covariance function of the ARMA process, what 
will help us to build inversion algorithms. In section 2, we present 
briefly and with no proof the means to obtain such expressions, 
both from the time and frequency standpoints. Section 2.3 is de- 
voted to a first try to solve the problem of identifying the coeffi- 
cients of the nonlinearity and the ARMA filter, with a sequen- 
tial approach. We discuss in the conclusion of the advantages and 
the drawbacks of our models, followed with the possible applica- 
tions to real data and some ideas to tackle with the inversion of 
H-ARMA models. 

2. STATISTICAL PROPERTIES 

We need in this section the use of some useful formulas based on 
n-linear expansions in Hermite polynomials series. These expan- 
sions allow to derive expressions for the expectation of products of 
Hermite polynomials when applied to a colored gaussian variable. 
The well known bilinear case - the Mehler formula - leads to 

E[H,(x)H,,(y)] = n!p”b(m - n) 

where 2 and y are normal variables with covariance p. 

(3) 

Kibble has extended the Mchler formula to the n-linear case, and 
Slepian has proved the same result a few years later with a more 
general approach [3] [4]. We are therewith able to give the gen- 
eral expression of the cumulants of an H-ARMA process at any 
order because it is only a linear combination of expectations of 
Hermite polynomials products. Unfortunately, this expression re- 
quires some special notations and more space than we have in this 
contribution. We will then restrict our study to the second and third 
order cumulants and we will report the general case in a future pa- 
per. 

remark 

For convenience and to make the formulas described above still 

valid, the ARMA process y[n] must be standardised - what we 

may do without loss of generality. In that case, a H-ARMA pro- 

cess is always centered (with zero mean), properv that comes from 

the Hermitepol~nomials: E [H;(y[n])] = 0 Vi 2 1. 



2.1. cumulants 

Knowing the autocovariance sequence r[n] of the ARMA pro- 
cess y[n], we can give the expression of the covariance -ra[n] of 
the H-ARMA nongaussian process r[n] (figure I) with the help 
of the Mehler formula 

yz[n] = E [z[t]z[t + n]] = f: crz k! rk[n] 

k=l 

(4) 

Using the Kibble-Slepian formula at the third order, we can follow 
the same approach to derive the expression of the bicovariance of 

-o[m, n] = E [Z[flL[t + m]z[t + nil 

= f: Ok, Qk2Qk3 E [Hk, (Y[t]) ffk, (Y[t + m]) HE3 (Y[t + n])] 
k, ,k2.kg=, 

H-ARMA(2.2.3) 

where KI = klik.-ka, Ka = kl+kt-kZ, K3 = kZ+k;-ka and 

we keep in the sum only the terms for which Icr + kz + k3 is even, 
This tedious result becomes very simple when the Hermite Jilter 

restricts to only one polynomial of degree k. In that case, we have 

(r[m]r[n]r[n - m]) 4 if k is even 

(6) 

= 0 if k is odd 

We have considered, as an example, a process H-ARMA(2,3,3) 

with Hermite filter H2 - 2H1, with 3 zeros and 3 poles for the 
ARMA part: 

zeros = (0.9, -0.9,0.5) 

poles = (0.7,0.9e 2jn0.075 , .e 0 9 -2jrrO.075 

) 

We have drawn on figure 2 the shape of the theoretical bicovari- 
ante of this model. 

2.2. cumulant spectra 

The cumulant spectra of H-ARMA models exists at any order as 
the Fourier transform of the corresponding cumulant if z[n] has 
an absolutely continuous spectrum - which is true because it is 
a instantaneous nonlinear transformation of a gaussian ARMA 

process. The expression of the spectrum of similar processes is 
given in ([5], pp.82-88) but with no results for the bispectrum. 
The discrete spectrum of an H-ARMA model with respect to S, 
the discrete frequency, is given by 

G2 [s] = DFT(-y2[n]) = f: c$ k! (I! [s]) *k 

k=l 

(7) 

where F [s] = c,“=, r[n]e-aj”? is the discrete spectrum of the 

ARMA process y[n] and F [s] 
*k 

is the nth-order discrete convo- 2.3. empirical estimators 

lution of F [s] (WC have to keep in mind that s is a discrete fre- A complete study of empirical estimators of the cumulants can be 
quency). found in [6] [7], in an asymptotic standpoint only: the estimators 

Figure 2: bicovariance shape of a H-ARMA(2,3,3) 

The discrete bispecttum can also be obtained. After a few calcula- 
tion, we finally have the following expression 

P 

+3 [a, 921 = 
c 

(Yk,@&‘k,kl!k2!k3! 

kl ,kz,ks=l 
N K1!K2!K3! 

* 

N-l 

c f [l]*K1; [s, + Z]*K2; [~a - 1]*K3 (8) 

l=O 

where KI, KZ and K3 are defined in the preceeding section. 
We have drawn on figure 3 the theoretical bispectrum of the same 
model as in figure 2 

H-ARMA(2.3.3) 
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Figure 3: bispecttum of a H-ARMA(2,3,3) 



are consistant and asymptotically normal. The special structure 
of H-ARMA models give us the ability to obtain the exact vari- 
ance of estimation - that means for finite sample sizes - for the 
covariance or the bicovariance. We have described the method for 
obtaining such a variance in [I], following the ideas pointed out 
in [2]. supported by extensive Monte Carlo simulations. The main 
result is that, for a particular process, we can give the minimum 
number of estimation points to reach a given variance of estima- 
tion (both for the covariance and the bicovariance). 

3. MODEL IDENTIFICATION 

3.1. description of the method 

The estimation of the coefficients of a nonlinear model is of a 
great importance and is never easily solved. In most cases, the 
dimension of a model is approached with an Akaike like criterion, 
and the coefficients itselves with a maximum likelihood approach. 
Moreover, some model structures allow to consider moment based 
methods (see [g] for a wide range of examples). In H-ARMA 

models, the. only prior is the gaussian density of the input, and we 
have choosen - in a first attempt of identification - to solve the in- 
version problem separately: the nonlinear part, first, and then the 
ARMA coefficients. We are aware that this is obviously a sub- 
optimal approach, but the identification of these coefficients is so 
hard that we must proceed step by step. We will present in the 
sequel of this section, the two steps identification knowing the di- 
mension of the model, that means that we take as a prior the maxi- 
mal degree of the Hermite filter and the order of the ARM.4 filter. 

l Hermite filter coefficients 
A first - although naive - idea to estimate the coefficients ok 
of the nonlinear filter is to build a penalty function and min- 
imize it over a field of possible values of ok (that’s the basis 
of mean-square approaches). Because our specific problem 
is ill-conditionned, we have regularised it by taking a frac- 
tional distance between two probability density functions. 

First, we estimate the histogram f^(i) of the observed data 
.a[n] on a discrete set of classes and numerically ’ calculate 
the posterior density of ~[n]. knowing (Yk. We minimize 
thereafter the distance (9) with a dichotomised grid search 
(various step lengths). 

(i 

l/i0 

d&r f) = c (f(i) - f(h))’ P<l 

(9) 

After a few tries, we have empirically choosen the value 
$ = 0.1. 
We have applied this approach to synthetic data in the next 
section, but the computer time to complete this kind of min- 
imisation is extremely large and we should have to speed 
up the convergence rate with classical methods (gradient 
search . ..). Unfortunately, the shape of (9) is extremely 
chaotic and such methods don’t provide reliable estimates 
(in our case). Some ideas to regularise the problem and 
to find other ways to achieve convergence in a reasonable 
computer time are under investigation, they will be reported 

1 because we don’t have an analytic expression for the p.d.f. of such a 

nongaussian process 

in a future paper. 

remark 

We have choosen this type of distance (9) because Cl or 

,Cz distances were providing very bad results and clussi- 

cul methods based on the likelihood (Kullback-Leiber dis- 

tances, EM, MCMC) are uneficient here because it does 

not provide a unique maximum but rather a continuous crest 

of maxima. Same comments and explanations can be found 

in 191. 

ARMA coefficients 
We present in this paper a method of identifying the ARMA 

coefficients of the H-ARMA models based on the cumu- 
lants. The developpement of other methods (maximum like- 
lihood, composite criterion, MCMC approach . ..) is still in 
progress and a comparison study on real data will be pre- 
sented in [9]. 
Having identitied the Hermite filter with the first step (esti- 
mated the values of &) and giving estimates of the covari- 
ante and the bicovariance on a principle axis (m = 0) of 
the observed data, we can deduce the covariance function 
r[n] of the ARMA process with the following polynomi- 
als (see eq. (4)-(5)) 

An estimated value I?[n] Vn > 0 is equal to the common 
zero of Pr and Pa. In the general case, Pr or Pa have P 
zeros, where P is the maximum degree of the Hermite non- 
linearity - then we must choose only one solution which is 
the estimation of I’[n]. A first way to solve the problem of 
the choice of a zero at any n is therefore to consider the 
common zero (if it exists of PI and Pa). A more global 
answer to this problem - also useful1 when PI and P2 have 
more than one common zero - is to decide at a time n which 
zero is the right one by testing the positive definite property 
of the sequence I’[i] Vi 5 n. 
Finaly, we make use of a Levinson type algorithm, based 
on the covariance sequence, to estimate the order and the 
coefficients of the ARM.4 filter. Because of its sequential 
steps, this method is not satisfactory: it depends on the ac- 
curacy of the estimates &k. The advantage of this approach 
is that the estimation of the autocovariance function of y[n] 
depends directly from the estimations of the covariancc and 
the bicovariance of z[n] on which we have proved theoreti- 
cal results of convergence (see section 2.3). 

3.2. results on synthetic data 

We have considered 2000 samples of an H-ARMA(3,2,0) pro- 
cess with Hermite filter H3 - 1.4Hz + 3.2Hl and 4R poles 
(0.9e 2jrrO.075 , 0.9e-2j*o.075). The results obtained with the meth- 
ods described in the preceeding section are reported in table 1. For 
the identification of the Hermite filter, we have started the grid 
search with the boundary regions: -10 < cyr 5 10, -5 5 cya < 
5, -5 5 oa < 5. The coefficients of the odd degree Hermite 



polynomials are determined up to a sign because the distribution 
of the input is symmetrical (gaussian density) and a coefficient of 
odd order and its opposite yield the same ouput behaviour. Taking 
those values of Qk, we obtain the two polynomials: 

1 
fl (rp]) = 6.46 r31n] +4.05 rzin] + 10.24 r[n] -+z[n] 

1'2 (qT1]) = -167.24 r31n] - 164.3 rzLn] - 115.14 qn] - +J[o,n] 

We have estimated 20 points of the ouput covariance and bicovari- 
ante and both polynomials yield to the same covariance function 
of 1~[n]. We have ploted on figure 4 the estimated covariance func- 
tion with the theoretical one in dashed line. The results are good 
for this very simple example, but studies on classical modelisation 
criteria such as fitting real data or prediction must be developped 
in future works. 

Table 1: estimations of an H-ARMA model 

Figure 4: estimation of the covariance of y[n] 

4. CONCLUSION AND DISCUSSION 

The H-ARMA models are a new attempt in modelling nongaus- 
sian data by nonlinear transformation of a colored gaussian input. 
The special structure of these models - instantaneous nonlinear fil- 
ter, Hermite polynomials . . . - ensures a lot of good properties, and 
especially the ability to derive analytic expressions for their cu- 
mulants and for the variance of their estimation. If that kind of 
nonlinear filter does not provide a very wide range of distribution 
behaviours, it allows on the other side a simple and intuitive con- 
trol of the covariance aspects. For that reason, we advice the use of 
H-ARMA more specifically when the observed data comes from 
a nonlinear system that is known to have a polynomial behaviour. 

We can mention for instance the beamforming diagram of antenna 
where the output measures comes obviously from a quadratic sys- 
tem. 
The identification of H-AR-MA models is far from being solved 
and the inversion method described in this paper is clearly sub- 
obtimal and computationally intensive. We base the estimation of 
the ARMA covariance function on the estimated nonlinear coef- 
ficients &.k, and we have no real result on the accuracy of their 
estimation: a global approach in which we would estimate jointly 
the : I nonlinear and the linear coefficients would be better. 

[II 

PI 

[31 

[41 

151 

[61 

L71 

WI 

[91 

5. REFERENCES 

D. Declercq and P. Duvaut. PropriCtCs des processus h-arma. 

In GRETSI-97, volume I, pages 15 l-l 54, Grenoble, 1997. 

P. Duvaut and D. Declercq. Real and complex qarma pro- 
cesses. J. Frank. Inst., (333-B)(3):413424, 1996. 

W. F. Kibble. An extension of a theorem of mehler’s on her- 
mite polynomials. Proc. Cambridge Phil. Sot., (41):12-15, 
1945. 

D. Slepian. On the symmetrized kronecker power of a matrix 
and extentions of mehler’s formula for hermite polynomials. 
SIAMJ. Math. Anal., (3):60&616, 1972. 

E.J. Hannan. Multiple Time Series. Wiley series in Prob and 
Math Stat, 1970. 

CL. Nikias and A.P. Petropulu. Higher-order Spectra Analy- 

sis : A nonlinear signal processing framework. Prentice Hall, 
New York, 94. 

Rosenblatt and al. Cumulant spectral estimates: bias and vari- 

ances. Coll. Math. Sot. Jan. Bol.: limit theorems in Prob. and 
Stat. Vol.57, Holland, 89. 

D. Guegan. Series chronologiques non lin+?aires d temps dis- 

cret. Stat. Math. Prob., Paris, 1994. 

D. Declercq and P. Duvaut. Inversion of h-arma models. In 
submitted to EUSIPCO-98, Rhodes, 1998. 


