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ABSTRACT: 

In this work. we take into account the non gaussian 
properties of textures and we propose a new approach for 
their characterization based on bidimensional adaptive 
modelisation using higher order statistics. The 2D- 
OLRIV (Bidimensionnal Overdetermined Lattice 
Recursive Instrumental Variable) algorithm allows 
accurate texture model estimation. Sets of ZD-AR 
coefficients obtained from the 2D reflection coefficients of 
the lattice model are used to characterize the texture 
model. This algorithm has the advantage of yielding non 
biased estimates of the ZD-AR model even when the 
texture image is disturbed by gaussian noise. A multilaycr 
neural network deals with these coefficients in order to 
classify different textures. In order to evaluate the 
performance of this approach, classification sensitivity is 
evaluated on a set of eight different textures. This 
characterization approach gives very promising results. 

1. INTRODUCTION 

Bidimensionnal autoregressive models (2D-AR) have 
now proved lo be very useful in many applications in 
image processing, such as restoration. adaptive noise 
cancelling. coding [2] .._ In texture classification. ZD-AR 
models are also of great help and have been used by 
several researchers (see [ I] [7] for example). Indeed. the 
2D-AR parameters are used for the characterization of the 
texture. and can then bc the input of a classifier. As an 
alternative. reflexion coefficients (PARCOR) can replace 
the ZD-AR parameters at the input of the classifier. as is 
done in [I]. 

2D-AR coefficients are obtained by solving the 
bidimensionnal normal equations, which can be done 
either by inverting the autocorrelation matrix or with 
adaptive algorithms such as ZD-LMS (Least Mean 
Square). or 2D-RLS (Recursive Least Square). Fast 

versions of the 2D-RLS algorithm can also be used. 
Among them, we can mention the 2D Lattice Fast RLS 
191, which has the main advantage of yielding the 
PARCOR coefficients used in [ I I. 

However. all these methods are based only on second 
order statistics. and provide biased AR parameters (or 
PARCOR) when images are disturbed by noise. leading to 
wrong classification when dealing with textures. In this 
paper. we propose to use cumulant-based estimation of the 
2D-AR paramelers in order to classify textures. Indeed. as 
the cumulants of gaussian processes are zero Ill]: it is 
possible to obtain non-biased estimates of the 2D-AR 
parameters of noisy textures. provided that the noise is 
gaussian and that only high order cumulants are used. 
Note that cumulants have other properties. such as phase 
sensitivity, which are not taken into consideration here. 
but which arc used by some authors ]5][6][7]] 121. 

In our approach, the 2D-AR parameters are obtained 
with the 2D-OLRIV (Overdetermined Lattice Recursive 
Instrumental Variable) algorithm 121. which solves the 
bidimensionnal high order normal equations. This 
algorithm can bc seen both as a cumulant-based version of 
the ZD-Fast Lattice RLS 191. and as a non-immediate 
cxtention to the bidimensionnal case of Swami’s double 
lattice I 13 1. The 2D-OLRIV algorithm is described in part 
2. 

Part 3 deals with the classification procedure. A 
multilayer neural nclwork classify the textures from the 
2D-AR parameters previously obtained. This network is 
trained with a bar&propagation algorithm [S]. We give 
results obtained by training the network with a part of the 
available data. and then testing it with the remaining part. 

2. THE BIDIMENSIONNAL CUMULANT-BASED 
ADAF’TlVE ALGORITHM 

In this part. we give a description of the ZD-OLRIV 
algorithm. As its derivation is too long. we will only 



recall the main points. A complete derivation is given in 

121. 

2.1. Cumulants of 2D processes 

Let us first recall a few definitions about cumulants of 
bidimensionnal processes. All the material is taken from 
[14]. where the reader can find a complete description of 
the HOS of bidimensionnal processes and their properties. 

For a zero-mean bidimcnsional process TV: the 
second and third order cumulants are defined as follows: 
~~~~(m,,ffl~)=Ely(i,j).v(i-m,~j-m,)1 

qV(m,~m3:n1~rh) =E(y(i,j~yfi-m,~j-m2),~i-n,,j-n~)) 

The 2D processes cumulants verify the same propertics as 
1 D processes. 

Suppose now that y(i,j) can be rcpresentcd as a 2D-AR 
model of order (pl,pz) with quarter plan support: 

(P,.Pz) 

c a,.,.~& -i,n, -j)=M,.n2) with n,., = 1 

x(ij) is the input noise of the model supposed to be white. 
zero-mean. non-gaussian and non-symmetric. 

The ZD-AR parameters verity the cumulant-based 
normal equations: 

(h.1’2) 

c a,.,c3~y(m,.m2:n, -i.n, -j) = 0 
(1,.,)=(0.0) 

./i~r(m,.m,;n,.n,) #(O.O:O.O) 

(P,.P2) 

c 
a,,Jcgx (0.0:-i,- j) = :fix 

(r.j)=(O.O) 

(1) 

where ~3~ is the skewness of the input noise x(i,j). By 
taking different lags in (1). one can build linear systems 
whose resolution yields the 2D-AR parameters. 

2.2. Analogy between 
bidimensionnal modelisation 

multichannel and 

In ] 151. it has been shown that the autocorrclation 
matrix of an ZD-AR model could be seen as the 
autocorrelation matrix of a multichannel process. WC 
have shown in [2] that if we choose some specitic lags 
(m,, rn?; nl. nz) in equations (1). the same kind of analogy 
can be done with cumulant matrices. As this analogy is 
needed for the derivation of the 2D-OLRIV algorithm. wc 
recall it in the sequel. 

By collecting equations (1) for all the lags contained 
in 

J4(P,,P,) = 
i 

n, = O.l:.. .p,:m, =n,.n,-l:.. A-P,\ 
I 

m 2 = oLn2 = O.l:...p, 1 
the following system is obtained: 

r C(0) C(-1) ... CC-L%) 11 a0 1 

C(l) 

I- 

C(O) CC-P, + 1) a, 

I I1 

II . . 

C(p2) ... **. C(O) q,+ 

with:a.j = [ ao, a,,, ... ah, . i= P . Iy3, 0 “’ op. 

and 

C(k) = 

cb (0.0.0. k) ~,,(W.-1.k.) ... c3,,(0,(l-p,,k) 

r,,(-1.0:O. k) ... +,J-l.O:-p,,k) 

c3.,, (-p, .(tO. k) 

c,JO.o: k.1) 

“’ c+(-p, Al-p, .k) 

c;.,. (0.0: p, . k) cb (0.0. p, - 1. k) c3g (0.0.0, k) 

c&W.p,,k) CJ) (-1.0:O.k) 

... ... +J-p,.o.O.k) 

It must be noted that the cumulant matrix involved in 
(2) is block-Toeplitz. but the blocks are not square. Then 
(2) is not a square system. 
On the other hand, consider a multichannel process I(n) 
which is supposed to be the output of an AR model of 
order p with parameters A, @,=I). A cumulant-based 
normai equations system can be built: 

c,y (()$I) c, (0,-l) Gr ((k-p2 > 

G (OJ) &Y (W) C3Y (O,-pz + 1) 

‘. 

A,, 

Al 

A 
Pz 

where 

C3, (i. j) = unvec(c,, (i. j)) 

=E(~‘(n)@~T(n+i)C3~(n+ j)) 

o is the Kronecker product. 

T3.u = unvec(l-3,y ) . I-,, : skewness of the multichannel 

input noise X(n). 
Once again, the cumulant matrix involved in (3) is 
rectangular-block Toeplitz. 
Suppose: 

E”(n)=[y(m,n) y(m-1,n) 0.. .v(m- p,.n)]. 

Then C(k) = CP (0.k). and the bidimensional cumulant 

matrix is the same as the multichannel cumulant malrix. 



Therefore. if 

,Y = rw Q. (4) - 

then g, = A, a,i = 1.2 . . . . . p2 (3 

Then the ZD-AR parameters can be obtained b the 
following procedure: 
l- Solve the multichannel cumulant-based normal 
equations for Aj i --- I to p2 

2- Solve equations (4) for go. 
3- Deduce Q from am and Ai. for i 1 to p2. 

2.3. The 2D-OLRIV algorithm 

The bidimensionnal Overdetcnnined Lattice Recursive 
Instrumental Variable (ZD-OLRIV) is based on the 
previous analogy. Here are its main steps: 

1. First. the cylindric connexity is introduced: we 
suppose that for a point al the end of a row, the next 
one is the beginning of the following row. This allows 
us to define a linear index n such that: n = n, *K + n, . 

where F: is the number of columns of the image. 

2. Then we define the multichannel process l(n) so that: 

.v,(n)=~~(4.n2) 

y, (n) = .v(n, - (i - I),n,) = y,(n - (i - l)k’).i = I ,..., p, + 1 

3. 

4. 

5. 

To obtain directly the ZD-AR parameters from the 
multichannel prediction parameters. WC musl perform 
the forward prediction of a multichannel process with 
same support as the 2D process. Therefore WC consider 
the forward prediction of the following vector: 

L:(n)=[v2(n+1) *-- y,,,,(n+l) .v,(n)] 

along the quarter plane support. 

Then WC perform the multichannel prediction of Yfi 
with the OLRlV algorithm 131. OLRIV is a fast 
algorithm solving overdetermined block-Toeplitz 
svstems. where the blocks are allowed to have more 
lines than columns. 11 uses an instrumental variable 
which can have more componcnls that the original 
process to take into consideration the rectangular 
character of the blocks. It lies on a double lattice 
structure. one lattice predicting the original process 
and the other the instrumental process. In the context 
of the present application, we choose the instrumental 
process as g(n) = E(n) @l”(n) so that the solved 

system is (2). 

Then we deduce the 2D-AR parameters from the 
multichannel forward prediction coefficients. 

The reader is referred to 121 for more details. 

3. RESULTS OF TEXTURE CLASSIFICATION 
WITH A NEURAL NETWORK 

To test the proposed characterization approach. we 
take 8 textures images of 256x256 pixels (see Figure 1) 
from the Brodatz Album [4]. A total set of 320 images of 
64x64 pixels (40 images of 64x64 pixels for each texture) 
are randomly chosen from the 8 initial texture images. 
For each image, we estimate a set of ZD-AR coefficients 
with the ZD-OLRIV algorithm presented below. The 
order of the ZD-AR model is chosen equal to (2.2). 

To classify the different textures, the eight estimated 
ZD-AR coefficients are used as input vectors to a 
multilayer neural network. trained using the gradient 
descent back-propagation algorithm ]8] with 75% of the 
available texture images (240 images of 64x64 pixels. i.e. 
30 images for each texture) and tested with 25% of the 
available texture images (80 images of 64x64 pixels, i.e. 
10 images for each texture). The training examples arc 
grouped into sets of n examples for each texture. The 
network weights are updated upon each presentation of a 
feature vector. The order of presentation of the training 
examples is random within each set. At each iteration 
(total training vectors presented). 75 % of the training 
examples for each texture arc presented. Every four 
iterations, the set of training examples is changed. For 
each texture. the classification sensitivity is the ratio of 
the number of positive tests to the total number of tests. 

In order to determine the optimum neural network to 
achieve the best classification. WC carried out several 
experiments using different architectures. that is different 
numbers of layers and different numbers of neurons in 
each layer. Both three binary coded outputs and eight 
uncoded outputs were investigated. The best result 
obtained is a network with 8 inputs, two hidden layers 
each containing 10 neurons, and three binary coded 
outputs. We use a training coefficient of 0.5. The 
momentum is 0.9 and the initial random values of the 
weights are set between -1 and 1. The threshold value of 
the sigmo’id is 0.2. There are n=6 parameter vectors in the 
training set for each texture. 

For the noiseless case. a classification scnsitivily of 
100 % is obtained that is all the images of the eighl 
different textures are well classified. When the texture 
images are corrupted by an additive zero mean gaussian 
noise with SNR of 3 dB. (see Figure 2) and after 20000 
training iterations. we obtain a high classification 
sensitivity of 96.25 %. In table 1. we present the 
classification sensitivity for each texture. The bubbles and 
grass textures arc the most difficult to be classified. As a 
comparison, note that in [l], where only second order 
statistics were used the classification robustness could not 
be assured for SNR lower than 5dB. 



Texture positive lest negative sensitivity 
test 

wood 10 0 1 100 % 

bubbles 8 2 80 % 

Table 1: The classification sensitivity for each texture 
(SNR=3dB) 

5 6 7 8 

Figure 1: The eight classified textures from the Brodatz Album: 
1 wood. 2:bubbleq 3:canvas, 4:ivy, 5: water, 6:grass, 7: wool. 

8:sand 

Figure 2: The eight noisy textures with SIR=3 dJ3: 
1 :wood, 2:bubbles 3:canvas, 4:ivy, 5: water. Qrass, 7: wool; 

8:Wld 

4. CONCLUSION 

In this work. we have proposed the USC of 2D-AR 
coefficients obtained from the 2D-OLRIV algorithm as a 
new parametric approach for characterizing textures. In 
order to cvaluatc the performance of this approach, 
classification sensitivity has been evaluated on a set of 

eight different noisy texlurcs. The obtained results in a 
noisy context arc very promising when compared to 
similar approach using only second order statistics. 
Perspectives concern simulations with other kinds of 
noise (non gaussian but symmetric distribution) and 
classification based on PARCOR coefficients instead of 
2D-AR coefficients. This last point may be of particular 
interest because the most complex part of the 2D-OLRIV 
algorithm is the computation of the AR parameters from 
the PARCOR coefficients. 
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