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ABSTRACT 

In signal subspace parameter estimation techniques, 
like MUSIC, degradations may occur due to parasite 
peaks in the spectrum, which may be connected to high 
sidelobes in the beam pattern or to ambiguities 
themselves. The aim of this paper is to study the 
presence of ambiguities in an array of given planar 
geometry. We propose a general framework for the 
analysis and thus we obtain a generalisation of results 
given in recent publications [2], [3] for rank one and two 
ambiguities. For rank k 2 3 ambiguities the study is 
restricted to linear arrays, for which we derive original 
and synthetic results. We present a geometrical 
construction able to determine all the ambiguous 
directions which can appear for a given linear array. The 
method allows determination of any rank ambiguities 
and for each ambiguous direction set, the rank of 
ambiguity is obtained. The search is exhaustive. 
Application of the method requires no assumption for the 
linear array and is easy to implement. An example is 
detailed for a non uniform linear array. 

1. INTRODUCTION 

Resolution is not the unique criterion in the 
performance evaluation of sources localisation 
techniques. Degradations may occur due to parasite 
peaks in the spectrum, which may be connected to high 
sidelobes in the beam pattern (sometimes referred as 
quasi-ambiguities) or to ambiguities themselves. These 
ambiguities arise when the array manifold intersects 
itself or when a manifold vector can be written as a 
linear combination of two or more manifold vectors [I]. 
The aim of this paper is to study the presence of 
ambiguities in the use of subspace method. 

We propose a general framework for the analysis and 
thus we obtain a generalisation of results given in recent 
publications [2], [3] for rank one and two ambiguities. 
For rank k > 3 ambiguities the study is restricted to 
linear arrays, for which we derive original and synthetic 
results. We present a geometrical construction able to 
determine all the ambiguous directions which can appear 
for a given linear array. This is a geometrical approach 

closely connected to [3]. The method allows 
determination of any rank ambiguities and for each 
ambiguous direction set the rank of ambiguity is 
determined. The search is exhaustive. Application of the 
method requires no assumption for the linear array and 
is easy to implement. 

In section 2 notations and definitions of ambiguity are 
introduced. In section 3 a study of rank one ambiguous 
arrays is presented. Section 1 depicts the main results 
obtained for rank two ambiguous arrays. This study is 
conducted for planar arrays of arbitrary geometry. In 
section 5, the study is restricted to linear arrays for any 
rank k ambiguities. The proposed method is presented. 

In section 6, an example is detailed for a non uniform 
linear array. Section 7 includes some conclusions. 

3 I. PROBLEM FORMULATION AND 
DE FlNlTIONS 

Consider an array with :1{ sensors receiving 5’ 
narrowband signals impinging on the array from :V 
different locations o1 ,...,tl:v. Note 

A( o1 ,.. , Bv ) = [ a( 6,),. .fz( 19~ )], the matrix which 

columns are the sources steering vectors, also called the 
array manifold vectors. 
The simultaneous localisation of N sources is only 
possible if the array manifold vectors a(@,),...,a(&) 

are linearly independent. An array is said rank k 
ambiguous for a set of k- 1 directions of arrival 
Bl ,....Sl;+l if matrix A is singular but rank k [l]. This 

can be written: 

3a, t O....,ak+l t 0 so that a,n(B,)+...+a,+,n(Bk+l)= 0 

(al,...,ak+l) ECU+’ (1) 

3. R4NK ONE AMBIGUlTLES (FOR 
GENERAL ARR4YS) 

This case occurs when one array manifold vector 
n(B,) can be written as a complex scalar multiple of 

another manifold vector n( 0,) where 191 f r32. 

3(al*0,a2#O)~C2, sothata,n(Bl)+a2a(B2)=0 

(2) 



In such case, the array cannot make the difference 
between two waves hith bearings 0, or 02. 
The wavefronts are supposed straight-line and on the 

same plane as the sensors. kI andk2 being the 

ambiguous wave vectors for the array under 
consideration, the phase delay of signal n from sensor m 
to sensor one is : 

v mn = i;,& (3) 

where i;, denotes the position of the m 
th 

sensor in half 

wavelength. Equation (2) is then equivalent to the 
condition : 

ff1e 
--kh f a22 ‘Jq’trr2 = 0 c3 pm1 = pm2 + 2n,;r 

(4) 
form= I,...,;\J 

The ambiguity condition can be written : 

%J, 1 integer (kl - k;)r, = 2p,l; (3 

with k = 2x//! where i, stands for the wavelength. It l-l 
can be given the following geometrical interpretation, 
see Fig. 1 : 

k2 kl 
3 * * 

Figure 1. Stars represent some possible sensor positions 
for a rank one ambiguous array. The horizontal axis is 

defined by vectors i, and &. 

The consequence is that, for arrays of arbitrary 
geometry, rank 1 ambiguities can arise if all of its 
sensors are located on a set of parallel lines separated by 
a distance I > 42. In the case of a linear array this result 
refunds the classical Shannon condition. In the general 
case, it establishes conditions for ambiguity and then can 
give the ambiguous directions [j], [7]. 

4. R4NK TWO Ai’VlBIGUlTIES (FOR 
GENERAL PLANAR ARRAYS) 

This situation occurs when the array manifold line 
intersects a plane in more than two points. In such case, 
one manifold vector can be written as a linear 
combination of two others manifold vectors, which may 
be written: 

3(al,a2,a3)eC3 a,tz(Ol)+a,a(d,)+aja(05)=0 

(ffl = 1) (6) 

tith a( 0,) = [... e-j”~~~ .I’ and v),,,,,, = k,., .r,. Sensor 

1 is taken as a reference i; = ~9. 
Therefore for sensor 1, 911 = (~12 = ~13 = 0. The 

ambiguity condition (6) can thus be written: 

l+uz+a3=0 (7) 

This relation can be interpreted geometrically in the 
complex plan as a triangle which sides are the steering 
vectors 

For sensor m ambiguity condition (6) becomes: 

e-k1 + a2J%t2 + a&%2 = 0 
(S) 

In the complex plan the product by ejY is a rotation. 
Thus the sides i,C2 .a3 turn respectively from angles 

Pm1 1 Pm2 r Pm3 and must reconstitute a triangle 

according to relation (8). The length of the sides of the 
triangle must be the same, therefore the triangles are 
deducted one from another by an isometry. This isometry 
can be a rotation or a rotation associated to a symmetry. 
Thus the triangles corresponding to the different values 
of m belong to two subfamilies, the rotation family and 
the rotation associated to a symmetry family. See [6] and 
[7] for more details on these isometry family. 

The following results can then be derived [5], [7] : 
1) Each rank two ambiguous array may be split 

in two subarrays a’( 0) and a2(0), where a’( 0) and 

a2(4 are rank one ambiguous, for three directions 

4,02 and03 i.e.: ai(Ol)=ai(02)=a’(S3). 

2) As a consequence, the sensors for each 
subarray are located at the nodes of a two dimensional 
lattice. 

3) Lattices corresponding to the two subarrays 
are related by an arbitrary translation. This is a simpler 
demonstration and a generalisation of a previous result 
of Lo and Marple [2]. 

5. RANK K A_MBIGUlTlES FOR LINEAR 
ARRAYS 

By generalisation of the previous results, we infer that 
the sensor array can be splitten in k subarrays. In each 
subarray sensors are on a grid of spacing denoted a. The 



k grids are translated one from another. For the first grid Proposed method : 

Fr?l = a.l’,G (9) 

where v is the unitary vector of the linear array. 

Let us denote k = (2;r/i.)ii. If a is the largest common 

denominator of the inter sensor distances in a subarray, 
the ambiguity condition can be written [5], [7]: 

3(ii, -ti.j) = njj(A/a) (10) 

Thus all the sets of vectors til ,...,tik+, which can be 
projected on the grid of step 2/a are ambiguous. By 

arbitrary translation of this grid, an infinity of 
ambiguous direction sets can be obtained. 

Figure 2. Determination of the ambiguous directions of 
arrival for a linear array. 

It appears clearly on Fig. 2 that the condition for no 
rank /i ambiguities is : k (A/l,) > 2. 

This nice geometrical property is closely connected to 
the notion of generator set of ambiguities introduced by 
F’roukakis and Manikas [3]. We define the generator set 
of ambiguity as the set {ii, ,4 ,.. ,iik .iik+l}, where 

I-i, =c. 

In order to save space, we will now represent the 
generator set as in Fig. 3. 

‘I A, a 
I95 ‘. ’ e.k 82 0” 

> 

a c~~e5 ~0~6~ c0se3 COST 1 Antenna axis 

Figure 3. Representation of an ambiguous generator set 

6. GEOMETRICAL DETERMINATION 
OF AMBIGUOUS GENERATOR SETS 

Based on the above considerations, we propose a method 
for the determination of the ambiguous generator sets 
and the corresponding rank of ambiguity for a linear 
array. The principle is very similar to [3]. Let us 

consider a linear array of ;tl sensors. 

I- Compute all the inter sensor distances. Note 

qj = ‘;j - i;i in half wave-length. 

2- All the intersensors distances a = qj smaller than 1 

cannot provide ambiguities because (A/Lz) > 2 

3- Consider each inter sensor distance qj, verifying 

condition 2- qj > 1, compute the corresponding generator 

direction set with a = qj (see figure 3). The result is 

{O”,B, ,..., e,}, where I is the number of considered 

intersensor distances. 
1- Split the array into subarrays so that in subarrays 
sensors are located on grids of step a translated one from 
another. The construction must be done in order to get a 
minimum of subarrays. Note q the number of subarrays. 
5- If q 2 I, there is no ambiguous generator set for this 
value of a. 
If q < I, then the array presents a rank q ambiguity, the 

ambiguous generator set is given by {O’, 0, ,. _, e, } 

6- Continue with the step 3- until all the intersensor 
distances have been taken into account. 

The method is very easy to implentent and requires no 
assumption. T~LIS all ambiguous direction sets are 
determined for the considered linear array. 

This geometrical approach of the search of 
ambiguities in linear arrays allows LIS to begin a new 
study of sparse linear arrays. In many papers, [1], non 
uniformly spaced linear arrays are shldied, in particular 
minimum redundancy and nonredundant arrays. The 
compromise between array span and sampling gain are 
discussed. We propose now to study ambiguities and 
quasiambiguities for these arrays. Application of the 
proposed method brings some enlighting results. 

7. APPLICATION OF THE PROPOSED 
METHOD TO PROUKAKIS AND 

MANLKAS E/XAMYLE[3] 

*- - -.-------* *..--- * -- 
- 2.3 - 1.1 1.1 2.3 

Figure 4. Sensor positions on the array in half 
wavelength. 

In their example, three sources are located in : O”, 
55.582’ and 82.505’. The considered array is a sparse 
linear array. 

Two parasite peaks appear in the spectrum of MUSIC 
located in 107.719” and 137.657’. Because the array is 
ambiguous, the MUSIC algorithm provided five 
directions rather than three. 



This phenomenon was not clearly explained in [3]. 
Application of the proposed method allows us to predict 
these ambiguous directions of arrival. 

l- Inter sensor distances in half wavelength : 
(1.2, 2.2, 3.4, 1.6) 

3- 1-1, The possibly ambiguous directions set 
is given by the following construction : 

131.8” O0 
> 

N, 1 Antenna axis 
, 

Figure 5. Determination of the possible ambiguous 
directionsset: {0”,131.8”}, 1=2. 
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Figure 6. Splitting into subarrays, q = 2. 

The construction gives two subarrays, q = 2. Because 

there are only two directions concerned, it can be a rank 
two ambiguity (q L I). A rank two ambiguity can arise 

only for three or more concerned directions. We 
conclude that for a = Y,* = 1.2, there is no ambiguity. 

la = YZj = 2.21, the same situation gives the Sante 

conclusion. 

(0 = r13 = 3.41, i/a = 2/3.1= 0.58. 

139.9” 1OO.20 65.7O O0 
- -...- 1 

’ I I- 
--. 

-1 > 
-0.76 -0.17 0.41 1 Antenna axis 

qy8<’ 

Figure 7. Determination of the possible ambiguous 
directions set : {O”,65.7”,100.20,139.90~, I= 4. 
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Figure 8. Splitting into subarrays, ~1 = 2 

The construction demonstrates the existence of a rank 
two ambiguity for the considered array. The ambiguous 
directions set is given on Fig. 7 We verify with MUSIC 
that if two sources are located in any two directions 
previously determined, two parasite peaks appear in the 
two foreseen directions. 

-1, 4.6 ;L / a = 2 /. 4 6 = 0 43 The construction of 

the possibly ambiguous directions set, as presented on 
figure 4 provides {O”,55.6”,82.5”,107.70,137.6”). Let 

us construct the subarrays. 
46 .gL-.---.A ‘. . . - -_- - 

--2.3 , - 
xc. 4 -? - 1.1 ----w 

Figure 9. Splitting into subarrays, q = 3. 

This is a rank three ambiguity. The directions of arrivals 
are exactly those detected in the MUSIC spectrum. It 
proves that the predicted ambiguous direction set is 
really an ambiguous set. Furthermore, we are able to say 
that the ambiguity is a rank three ambiguity. 

8. CONCLUSION 

We propose a general geometrical framework to study 
ambiguities for arbitrary arrays. For linear arrays, a 
geometrical construction is presented and is able to 
predict all the ambiguous directions for the considered 
array. The presented method opens a new way to study 
and design non uniformly spaced linear arrays. 
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