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ABSTRACT 

This work develops a novel dynamic fuzzy logic system that, 
based on a fuzzy basis function expansion, successfully solves 
the non-linear problem of narrowband interference prediction 
and rejection in DS-SS. A fuzzy basis function representation 
provides a natural framework for combining both numerical and 
linguistic information in a uniform fashion. The result is a low 
complexity non-linear adaptive line enhancer, which offers a 
faster convergence rate and an overall better performance over 
other well-known non-linear line enhancers. 

1. INTRODUCTION 

Spread Spectrum (SS) communications offer a promising 
solution to an overcrowded frequency spectrum amid growing 
demand for mobile and personal communication services. The 
proposed applications for commercial use of spread-spectrum 
involve the overlaying of spread spectrum signals on existing 
narrowband (NB) users, thus, implying strong interference for 
the SS system. While SS has inherent noise suppression 
capability, system performance can be further enhanced at the 
decision device if an interference rejection filter or line enhancer 
is used before despreading [I]. 

In the case where a single antenna is used and the statistics of the 
interferent signals are unknown, the rejection filter is usually a 
transversal adaptive filter (adaptive line enhancer or ALE) and 
relies on both, the pseudo-white properties of the SS signal and 
the predictability of the narrowband interference, both present in 
the received signal z(t). 

The received signal z(t) consists of 3 additive componenets: the 
SS transmitted signal s(t), the wide-band noise n(t), and the 
narrow-hand (NB) interference i(t) 

Z(f) = s(t) + n(r) + i(f) (I) 

The signal s(t) is a modulated widehand signal given by 

.X(f) = A C(f) d(f) COS(W<,f) (2) 

where A is a constant amplitude, W,, is the carrier frequency, d(t) 

is the information, a binary data sequence taking on the 
squiprobable values of & 1 each of which lasts for T seconds, and 
c(t) is the spreading sequence, usually a pseudorandom noise 
cP?J) code o chip sequence, which also takes the values of f I 
hut which lasts for Tc seconds. where T,.<<r 

in reception, to recover the information d(t), z(t) is chip-matched 
and sampled at the chip rate of the PN sequence. We thus have 

zt =st +n, +ik (3) 

where (sk). (nk} and (ik) are the discrete-time sequences from 
(s(t)), (n(t)) and (i(t)) respectively. (Sk), (nk) and (ik) are 
assumed to be mutually independent. We have assumed that n(t) 
is bandlimited and becomes white after sampling. For the 
interference, we have considered that its bandwidth is small 
compared with 11%. Finally, since the PN sequence is random, 
we can assume (So), to be a sequence of i.i.d. random variables 

taking values of f 1 with equal probability. 

In equation (3). (Sk), and (nk) are wideband signals and are 
poorly correlated when sampled at the chipping rate. Therefore 
when the ALE tries to estimate the next sample of the signal, it 
would succeed only in estimating the highly correlated 
interference and consequently manages to suppress it. Note, 
however, that the sequence (sk] is highly non-Gaussian. Thus, 
the optimum tilter for predicting a narrow-band process in the 
presence of such a sequence will, in general, be nonlinear. Only 
if the SS signal lies below the noise floor, then the Gaussian 
assumption for sk+nk is more reasonable and a linear filter 
achieves good results [I]. 

In [2], Masreliez developed an Approximate Conditional Mean 
or ACM filter, with a structure similar to that of the Kalman 
filter, in order to estimate the state of a linear system with non- 
Gaussian observation noise. Vijayan and Poor [3] employed this 
algorithm to solve the NB interference suppression problem in 
the DS-SS. When the AR parameters are unknown, Vijayan and 
Poor also developed an adaptive nonlinear LMS algorithm based 
on the ACM filtering algorithm. This algorithm was later 
modified by Rush and Poor [4] and Wu [5]. All these non-linear 
algorithms depart from the state-space representation of the 
system 

i, = @i,-, + wp (4.a) zf = hi, + vk (4.b) 

where the interference has been modeled as a Gaussian AR 

process of order P. The state vector is ik=[ik, ik.l,.. &+I] and is 
generated by the Gaussian process wk=[wk 0 ()]T. and the 
matrix 0, formed by the AR parameters. The observation vector 

is h=[ I 0 . . O] and the measurement noise is the non-Gaussian 
sequence vk= sk+nk. 
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Neural Network and Radial Basis Function systems have also 
been studied as adaptive line enhancers [6] and [7]. However, the 
gcncral problem of non-linear predictors is that they require 
greater complexity than its linear counterpart, which is typically 
encompassed in a single DSP chip. Additionally, for non-linear 
filtering, though the nature of the error surface is not known, it is 
highly likely that there are multiple local minima. Therefore, a 
gradient search technique cannot be guaranteed to converge to 
the globally optimum parameter estimates. 

In this work we depart from the Kalman and ACM filter state 
space formulation in (4) and design an adaptive fuzzy predictor 
which outperforms the results of the recent works of [3] and [S] 
and speeds up the convergence of the adaptation process. Also 
the proposed technique presents an attractive parallel algorithmic 
structure, where, at each instant of time, just a fixed number of 
products and sums and one division are needed to produce the 
output. 

2. ADAPTIVE FUZZY LINE 
ENHANCER 

The fuzzy rejection filter to design departs from the state space 
representation formulated in (4). Taking advantage of the 
relationship equated in (4.b). the fuzzy system predicts the 
interference sample ik from the observation zk. In contrast to 
other non-linear interference cancellers, the proposed system 
does not require the mathematical model of the interference in 
(4.a): no AR parameters have to be neither known nor estimated. 
The fuzzy system to design just relies on the slow varying nature 
of the NB interference in order to model its behavior by means of 
linguistic IF-THEN rules, which replaces equation (4.a). The 
interference range is quantized in regions orfuq set.s and, from 
a reference point, the evolution of the interference among this 
regions is followed by means of linguistic IF-THEN rules of the 
type; “IF ikeJ is in the region ofpositive high values and ikm2 is in 
the region of positive high values and ikel is in the region of 
positive high values THEAV ik is in the region of positive high 
v&es “. These IF-THEN rules are the core of the fuzzy system to 
design. Additionally, the statistical knowledge of the 
measurement noise (vl;) and model noise (WI;) can be easily 
introduced in the design of the proposed system jiizification 
stage. 

A fuzzy system is a functional network (Fig. 1) represented as 
series expansions of fuzzy basis functions g,(x) 

Y = J(x) = 2 g,(x) ej (6) 
,=I 

where 0 o R are constants. Using the Stone-Weierstrass 
I 

theorem, linear combination of fuzzy basis functions prove to be 
capable of uniformly approximate any real continuous function 

on a compact set to arbitrary accuracy (81. In our case y=i; and 

the input x is the measurement zk and two fee-forwarded 

interference estimated values: x = z/, I~ , I~ [ ’ __ . -?I. The most 

important advantage of usin, (7 fuzzy basis functions, rather than 
polynomials, radial basis functions, neural networks, etc., is that 
a linguistic IF-THEN rule is naturally related to a fuzzy basis 
function (FBF). In other words, the FBF provide a general 
framework to translate abstract concepts into computable entities. 

I Rule base: matrix R B 

wT 
B 
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Figure 1. Adaptive fuzzy line enhancer. 

In fig. 1 we distinguish 4 main parts: thefuzzifier maps the crisp 
inputs x to fuzzy sets defined on the input space; the set of 
statements comprise thefiz-y rule base, which is a vital part of a 
Fuzzy Logic System, the fuzzy inference engine combines the 
statements in the rule base according to approximate reasoning 
theory to produce a mapping from fuzzy sets in the input space X 
(i.e. Ai in fig. I) to fuzzy sets in the output space Y (i.e. Bi(.) 
in fig.2). Finally, the defuzzifier maps the aggregated output 
fuzzy sets to the single crisp point in the output space, which in 
our system is the interference estimate of ik to be used by the 
communication receiver. Next, the design of the proposed fuzzy 
logic system (FLS) is described. 

2.1 The Four Stages of the FLS 
The mathematical framework of theory of fuzzy sets provides a 
natural basis for fuzzy logic, which is a generalization of binary 
logic. In other words, the logical inferencing using fuzzy sets is 
known as fuzzy logic (8-l I]. In fuzzy set theory there is no sharp 
boundary between those objects that belong to the class and 
those do not. In addition, an element may also be a member of 
more than one set. Membership function in a fuzzy set is a matter 
of degree. A fuzzy set F in a universe of discourse, U, is 

characterized by a membership function puI:, which takes values 

in the interval [O,l]: that is, ,u,,. : [,’ + [O,l]. Thus, a fuzzy set F 

consists of a generic element u and its grade or membership 
function: that is, F = ((u,rufi (u))[uE [;}. A fuzzy variable is 

characterized by a term set or set of fuzzy sets (i.e. of linguistic 
or fuzzy values) of u. In this work A(.) and x will be used for the 
input term set and the input variable, respectively. Also B(.) and 
y will be used for the output term set and the output variable, 
respectively. Due to noise, the measured inputs are vague and, 
therefore, the system classifies or quantize them in overlapping 
regions or fuzzy sets Ai( to whom the inputs belong with some 
membership degree (e.g. A3(.) stands for the fuzzy value: ” 
positive high value”). Thus, these sets conform in a natural 
situation when describing the possible values of the 3 

measuremenls in x. 



Figure 2. Fuzzy term set for the variable “filter input” 

Figure 2 plots Gaussian membership functions, however, there 
are different methods to determine a fuzzy membership function 
[IO]. It is worth noting that a membership function may be 
subjective, but not arbitrary. Since our problem employs 
statistical inputs, the design based on their probability density 
functions shall be appropriate. In this way, we relate the fuzzy 
membership functions to physical properties of the system. From 
(4.b) we know the conditional probability density (f.d.p) function 

of ik.,, p(i,-, /z~_,). Therefore, if we relate the fuzzy sets A+, 

with this f.d.p., we can say that whenever the input falls inside 
these fuzzy sets, this input will be related to some degree with ik. 
,. This dynamic designed fuzzy sets (dynamic because their 
position depend on the value of z,.,) act as a reference for 
locating values ik+ ik.3 in a slow varying narrowband. 
Additionally, to obtain the fuzzy set for zk we note that 
p(lk /jk-,) can be assumed to be Gaussian by a reasoning 

equivalent to the one used by Masreliez in [2] to develop the 
ACM filter. Thus, the fuzzification of zk is done by means of the 
same furzy set term A(.) as the one depicted in tig.2. Finally, the 
output fuzzy sets B(.), which quantized in a fuzzy way the 

possible values of the estimated interference values i;. , have 

been designed as IM Gaussian functions normalized to 1 and of 
equal variance. M is the number of IF-THEN rules. Their means 
are initially the same as those in fig.2, however, they can be 
modified by a LMS type algorithm as we comment later in this 
section 2. We note two general design considerations: I) because 
of the relationship between f.d.p and membership functions, the 
more noise present, the wider the fuzzy sets have to be; 2) to save 
computation the input fuzzy sets of fig. 2 and the output fuzzy 
sets can be designed as triangles with the same width as the 
Gaussian noise variance. 

Once the input fuzzy sets are designed, the fiuificr maps a crisp 
measurement or value into a fuzzy set. The most widely used 
fuzzifier is the singleton fuzzitier: the crisp point xi is mapped 
into a fuzzy set F with support x where pF(x) Z6(x-x ). We 

note however that in cases when the signal-to-noise ratio (SNR) 
is low or there is high input uncertainty. non-singleton fuzzy sets 
[g] are more useful as the simulations in this paper show. 

The/uzzy rule base consists of a set of linguistic rules in the 
form of “IF a set of conditions are satisfied, THE:\: a set of 

consequences are inferred”. Suppose we have a rule base 
consisting of M fuzzy if-then rules R,,, (m=I . ..M) 

R,,, : IF l*,., is :I ,,,, and ii.: is .-I,, and 1: is Am, THE.V ik is B, 

where (0,+1,+2.+3}. The predictor of interference i, is 

constructed based on the M rules. Each rule R,, can be viewed as 
a fuzzy implication which is a fuzzy set RI,,(.) in XxY with 

pLR,,,(x,y) =pA,, (x)*pAl, (x)*pAd (x)*pH, (y)’ where the 

most commonly used operations for “*” are “product” and “min” 
[g]. In this work we have used the “product” operation. 

The fuzzy rules can be sistcmatically derived by considering all 
the possible combinations among the 7 membership functions 
(7”=343). However, in this work, this rule explotion is 
dramatically reduced to 72 rules by avoiding those irrelevant 
rules for slow varying interferences such as: 

R, : IF b-, is A-, and i_, is A, and z, is A_, THEN t is B., 

The fuzu, inference engine or fuzzy associative memories is 
decision making logic which employs fuzzy rules from the fuzzy 
rule base to determine a mapping from the fuzzy sets in the input 
space X to the fuzzy sets in the outputs space Y. Let F be a fuzzy 
set in X; then each R, determines a fuzzy set FOR, in Y based on 
the sup-star corn osition 

P 

PI: 
Pm, (Y) =suP,Ex l&(X)*&. (KY> . In the case of 

singleton fuzzification ph.(X) = 6 (x -xi ) and results in 

where w, is the firing strength or weight of the mth rule. In 
summary, all the M rules of the FAM’s are activated parallely 
and imply a fixed number of sums and multiplications. At instant 
of time “k”, the result of the inference of each rule can be 
expressed as a matrix multiplication [I l] (tig.1). Finally, the 
individual statement solutions are aggregated to provide the 
overall solution 

After the fuzzy inference, the defuzzifirr performs a mapping 
from the fuzzy sets in Y to crisp points in Y. The following 
centroid or center of mass defuzzifier [g] is the most commonly 
used method. It uses all and only the information in the output 
set B in its domain “y” in a Bayesian sense (see eq. (8)). 

where L, = centrolli iB, ( y)} and 8, = 7, 

Note that we have finally come to the functional expression (6), 

which depends linearly on the output parameter B,,,. Therefore, 

we propose to use an LMS (least mean square) type algorithm in 

order to adjust O,,, and refine the fuzzy system result. This LMS is 
modifed to incorporate the approximate conditional mean non 
linearity exactly in the same way as done in [3]. That is the 

adaptive algorithm is applied to each fuzzy system output i;. in 

order to minimize ( Zp _ i;. ) - sign ( = ~ - i;. )112 
II 

3. SIMULATIONS 
In this section, we report on simulations carried out to evaluate 
the performance of the proposed algorithms. We follow the 
examples studied in [3] and [5]. Our performance measure is the 
commonly used SNR improvement, defined in [3-51. The SNR at 
the input was varied by changing the power of the interfering 



signal. The variance of the background thermal noise was kept 

constant at 0 z = 0.0 ] . The SS processing gain is IO. All results 
were obtained based on IO trials and, for each trial, 3000 data 
points were computed. Table I summarizes the results of the 3 
sets of simulations. It can be seen that adaptive non linear 
filtering fuzzy techniques offer considerable improvement over 
conventional linear filters (i.c. TS-LMS: Two Sided Least Mean 
Square filter) and the non linear algorithm designed in [5]. 

We note that, if to simplify computation triangular membership 
functions are used instead of Gaussian ones, the results just 
degrade in I dB. Also, in the case of AR interference no 
difference exists if the 72 rules are reduced to 32. In the case of 
single tone sinusoidal interference, for high SNR ratios the 
performance is not so good as in [5]. This fact is due to the 
quickly speed of change of the value of the interfering signal. If 
we wish better results, we have to assign more membership 
functions to the inputs to cover the variations of the interfering 
signal. Other point to remark is that the LMS adaptation is even 
not needed in the case of the AR interference. In any case, the 
LMS converges in few samples (fig. 3) due to the good rule 
initialization and the good properties of the FBF. 

Finally, we have also carried out a study for noisy scenarios. As 
nothing is said in [3-51 for this case, we compare our algorithm 
with the linear ALE of 4 taps reported in [ 11. Figure 4 shows the 
performance of the proposed algorithm when no LMS adaptation 
is carried out. The best results are for the non-singleton fuzzy 
filter, which is more suitable for noisy scenarios [8]. Logically, 
the performance of the linear filter is improved for low noise. For 
high noise the designed system improves the linear predictor LP 
and obtains BER of the same order of magnitude than the LP 
with matched filter. We note that in the linear simulations AR 
parameters are considered known, while in the fuzzy system no 
interference knowledge is assumed. 

4. CONCLUSIONS 
In this work we have addressed the problem of interference 
rejection in SS systems. We present a low computational 
algorithm that improves the performance obtained with recent 
non-linear algorithms, Just the slow varying nature of the NB 
interference is assumed and used for the rule initialization, which 
helps to avoid local minima and to speed up convergence. 
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Figure 3. Mean Square Error for I tone interference. 

Figure 4.BER after despreader for 100 tones. The signal- 
to-interference ratio per chip is -20 dB. 

Table 1. SNR improvement (dB) for singleton fuzzilication. 


