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ABSTRACT 

Shepherd and McWhirter proposed a QRD-RLS 
algorithm for adaptive filtering with linear 
constraints. In this paper, the numerical properties of 
this algorithm are considered. In particular, it is 
shown that the computed weight vector satisfies a set 
of constraints which are perturbed from the original 
ones, the amount of perturbation being dependent on 
the wordlength. The linearly constrained FLS 
algorithm of Resende ef al is also studied. Simulation 
results show that this algorithm is numerically 
unstable, even in the absence of explosive divergence. 

1. INTRODUCTION 

Adaptive filters have found many applications in 
signal processing [4]. In applications such as adaptive 
beamforming. linear constraints are often imposed on 
the filter weights to attain a desired temporal and/or 
spatial response [3], [8]. When implemented digitally, 
it is well-known that adaptive filters can suffer from a 
number of numerical problems [4]. caused by the 
accumulation of rounding errors which arises as a 
result of the inherently recursive nature of the 
adaptive algorithm and the necessarily finite precision 
of the digital implementation. 

There exists a rich literature on the study of the 
numerical stability of the unconstrained RLS 
algorithms. Some of these algorithms are potentiahy 
unstable because of the implicit or explicit update of 
the inverse covariance matrix [ 11. [2], [9]. However, 
the QRD-RLS algorithm is stable [4], [5]. It is shown 
in 151 that if the filter input does not approach zero 
asymptotically, then the computed weights are 
bounded. 

Although the numerical stability of the unconstrained 
algorithms are well understood, imposition of 

constraints may lead to extra numerical difficulties. 
An immediately obvious problem is that the deviation 
of the computed weights from the imposed 
constraints may grow unacceptably large 131. We 
called this problem constraint drif. 

In this paper, we analyze the constraint drift property 
of the linearly constrained QRD-RLS (LCQRD-RLS) 
algorithm proposed by Shepherd and McWhirter [7]. 
We begin with a brief description of the algorithm. 
After that, a geometrical interpretation is presented to 
show that the LCQRD-RLS algorithm is free from 
constraint drift. This is confirmed by simulation 
study. The simulation study also compares the 
numerical performances of the LCQRD-RLS 
algorithm against the linear constrained FLS 
(LCFLS) algorithm of [6]. It is shown that the LCFLS 
is numerically unstable. 

2. QRD-RLS ALGORITHM FOR 
LINEARLY CONSTRAINED ADAPTIVE 

FILTERING 

Consider the FIR filter characterized by its weights 
w(n) as shown in Figure 1. The linearly constrained 
RLS filter is defined by the following optimization 
problem 

I$I) i finmild - wH(n)u(i)12 
i=O 1 

subject to CHw(n) = m (p.1) 

where d(n) is the desired signal; w(n) is the N x 1 
filter weight vector; u(n) = [u(n) . . . u(n - N + Z)lT is 
the N x 1 input data vector; 0s p 5; 1 is the 
forgetting factor; C is the N x K constraint matrix 
(assumed full rank), and m is the K x 1 constraint 
vector. 



In [7], Shepherd and McWhirter showed that the 
above optimization problem can be solved by the 
systolic array structure depicted in Figure 2. The 
whole network consists two sections: a frozen 
network and a canonical systolic array. The frozen 
network restricts the computed weight vector onto the 
constraints while the canonical section carries out the 
least-squares minimization. The signals ii(n) and j, 
are defined within the equation box in Figure 2. The 
quantities U, V and m’ can be obtained by applying a 
unitary transformation (QR decomposition) to the 
augmented constraint matrix. 

Q[cH-m] = [UVrng (1) 

where the matrix U is required to be upper triangular. 
The matrix on the right side of (1) is stored in the tit 
K rows of the systolic array. This forms the frozen 
network. 
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Figure 1. Adaptive FIR Filter 

In operation, the input data are first processed by the 
frozen network to produce [a(n) j(nd . This is then 
fed to the canonical section. The a posteriori residual 
is produced at the output of the final cell. Note that for 
proper operation of the array, the input data must be 
delayed one snapshot per column. The weights can be 
obtained from the systolic array by backward 
substitution. 

Detailed derivation of the algorithm and description 
of the function of the systolic array are given in [7]. 

3. CONSTRAINT DRIFT 

As mentioned above, the accumulation of rounding 
errors may push the computed weights far off the 
constraint plane. In [3], Frost studied the constraint 
drift problem of the linearly constrained LMS 
algorithm by making a geometrical interpretation. 

Here, we follow a similar approach to analyze the 
LCQRD-RLS algorithm. 
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Figure 2. Systolic Array for Linearly Conshined 
Least-Squares Adaptive Filtering 

Using the definitions in Figure 2, we can write the 
weight vector at iteration n as the sum of two 
orthogonal components as follows 

w(n) = Q,(n) + wc 

= [ 1 -U-‘v wb(n) + 
I 

I J-l m’ 

0 1 

= ( [-U:jwb(n) + b;ij] + k]wb(n)‘” 

= (Bwb(n) + wc) + wlb(n) 

where wb(n) is the unconstrained weight vector 
implied by the canonical section. 

When finite precision arithmetic is used, rounding 
errors are inevitably introduced. Firstly, there are 
rounding errors in the stored values of the pre- 
computed frozen network. These introduce a fixed 
perturbation in the matrix A and the vector w,, and 
can be interpreted as a perturbation of the imposed 
constraints. Secondly, the preprocessing of the input 
data in the frozen network to compute a(n) and j(n) 



will introduce additional rounding errors which can 
be viewed as the result of applying a perturbation on 
the input data. Thus the weight vector derived from 
the systolic array implementation of the LCQRD- 
RLS algorithm corresponds to the solution of 
problem (P. 1) with perturbed constraint matrix, 
perturbed constraint vector and perturbed input data. 
The important point to note here is that the weight 
vector always satisfies the perturbed constraints 
exactly. 
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Figure 3. Geometrical Interpretation 

Equation (2) and the above discussions can be 
visualized in Figure 3. 5 denotes the computed 
quantity of x. The axes wX represents the second term 
in equation (2) while wY represents the first term. 
CHw(n) = m are the original constraints. However, 
due to rounding errors, the constraints that the 
computed weight vector actually satisfies are given by 
EHw(n) = I%. This results in the computed weight 
vector ii(n) deviating from the original constraints 

by 6(n). 
From Figure 3 we see that the deviation of the 
computed weight vector from the imposed constraints 
depends on how close the perturbed constraints are to 
the original ones, and how large is the vector Gb(n). 
To keep the perturbed constraints close to the 
imposed ones, we can simply use more bits in the 
frozen network. For d(n) to be bounded, we require 
iib(n) to be bounded which is the case if the input 
data u(n) do not approach zero asymptotically [5]. 

4. SIMULATION STUDY 

In this section, we present the results of a simulation 
study which highlights the superior numerical 
performance of the LCQRD-RLS algorithm. In this 
study, the LCQRD-RLS and the LCFLS of [6] are 
both constrained to have unit response at frequencies 
0.2~ and 0.57~. The input signal consists of 3 
sinusoids with unit amplitude at frequencies 0.2x, 
0.57~ and 0.325x, and a zero mean additive noise 
with variance 0.1. The desired signal d(n) is set to 
zero for all n. 

Figure 4. Conshint Drift -- LCQRD-RLS 

Figure 5. Constraint Drift -- LCFLS 

For the systolic array, the precomputation of the 
frozen network and the backward substitution to 
extract the weight vector were carried out in full 
precision (l-bit sign, 1 l-bit exponent and 52-bit 
mantissa). All precomputed quantities in the LCFLS 
were also calculated with full precision. In contrast 



the computations in the recursive updates were 
carried out with only 10 bits in the mantissa. 

Figure 4 presents the instantaneous output power of 
the systolic array and the deviation of the 
corresponding weight vector from the original 
constraints (defined as Ilrn - ~Twll). No sign of 
divergence was observed in this figure. 

For comparison, the same data were applied to the 
LCFLS and the results are displayed in Figure 5. As 
can be seen, the weight vector of the LCFLS suddenly 
deviates significantly from the constraints at about 
iteration 2700. This is accompanied by a sudden 
increase in output power. Detailed examination of the 
algorithm revealed that this divergent behavior is not 
caused by explosive divergence [4] but rather is due to 
the update of the Q matrix of this algorithm [6] 
becoming unstable numerically. This Q matrix is used 
to reinforce the constraints in the LCFLS algorithm. 

5. CONCLUSIONS 

In this paper, we analyzed the constraint drift property 
of the linearly constrained QRD-RLS algorithm. It is 
shown that since the computed weights given by this 
algorithm always satisfy a set of perturbed constraints 
exactly, so the LCQRD-RLS algorithm will not 
exhibit constraint drift. We also showed that the 
LCFLS algorithm is numerically unstable. 
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