
A NOVEL SIMILARITY MEASURE FOR COMPRESSION and CLASSIFICATION 

Yusuf Ozturk Hiiseyin Abut 
Department of Electrical and Computer Engineering, 

San Diego State University, 
San Diego, CA 92182- 1309 

ABSTRACT 

In this study we propose a new architecture for texture 
classification based on pair-wise pixel associations as an 
extension of the recently developed Multivalued Recursive 
Network (MAREN) architecture. Maybe more critically 
we propose a novel similarity measure and classification 
algorithm to be used with this network. The proposed 
fidelity criterion has been observed to be tightly coupled 
with the ubiquitous mean-square error (MSE) distance 
measure. Both SOAR and MAREN structures can be 
considered extensions of the associative memory concept 
frequently used in neural networks. Our proposed 
similarity measure is based on the principle of directional 
divergence of interpixel relationships in a given texture 
and promises a number of advantages over the MSE 
measure. In this paper, SOAR will be discussed within the 
framework of a texture classification problem, but we 
believe it would be very easy to extend to other 
applications where interpixel relationship is the primary 
focus. 

1. INTRODUCTION 

The primary objective in texture identification is to find 
different type of patterns present in a given image, to 
identify them, and to separate them into different classes. 
Normally, this is achieved by extracting a texturally 
meaningful feature set with respect to a mathematically 
tractable and computationally efficient fidelity criterion in 
the form of a distance measure or a similarity function. 

In the image processing literature various feature sets have 
been used with varying degree of success. Frequently used 
features include co-occurrence matrix [2], multi-channel 
multidimensional linear prediction coefftcients [3], vector 
codebooks, neural networks, and wavelets. Almost all of 
the models proposed in the literature have an open-loop, 
sometimes, even off-line data collection and parameter 
extraction stage for obtaining respective parameters 
needed in later stages. After that, a search process is 
employed to find the best match for the parameters of a 
given texture block among a collection of predetermined 
templates stored in the system with respect to a 
performance measure. In some applications, there are 
provisions for rejecting all of the candidate templates or 
enlarging the size of the template memory. In a number of 

these cases, the problem is turned into a hypothesis-testing 
problem as it is done in the classical applied statistics. 
Various feature sets, such as mean-square error (MSE), 
mean-absolute difference (MAD), spectral distortion 
measures, and their extensions, have been successfully 
used in the identification stage. 

Here we propose a System of Associative Relationships 
(SOAR) to learn the underlying structure in a given 
texture. This architecture is an extension of a recently 
developed technique called Multivalued Recursive 
Network (MAREN)[ I]. MAREN is a novel integer-valued 
recurrent, nonlinear associative memory structure inspired 
from Hopfield and Tank’s binary associative memory [4]. 
As in all other pattern matching techniques, the SOAR 
needs a fidelity measure in the texture identification stage. 
Instead of using the traditional difference-based measures, 
we propose to use a new similarity measure, which 
attempts to emphasize the similarity between two patterns, 
rather than the distance between them. It is an integer 
quantity and it will not involve any costly operations such 
as multiplication or matrix inversion. It will further be 
demonstrated that the new measure is tightly coupled with 
the traditional mean-square error measure. Even though, 
this measure is developed for texture identification it can 
be easily extended to applications in motion estimation, 
data compression based on popular vector quantization 
and others. 

2. SYSTEM of ASSOCIATIVE RELATIONS (SOAR) 

As we have stated above, the system of associative 
relations makes use of the pair-wise pixel associations. 
The pixels defined by a token over an image are used for 
determining associations among pixels. An analysis token 
is basically an irregular mask that will determine the 
underlying structure of associations. The size and shape of 
the token will depend on the target application. The token 
can be simply a 3x3 window centered at a pixel whose 
associations are explored. It can be of any shape such as a 
T or a circular window. In Figure I, we present two 
possible token shapes that can be used to specify the 
region of interest for associations. 
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Figure.1 : Possible token shapes determining the region of 
interest for recording associations between pixels. 

Once we decide on the token shape we can proceed with 
the definition of the SOAR architecture. In this work, we 
will use rectangular windows of 3x3 , 4x4 and 8x8. Since 
the structure of SOAR does not depend on the shape of the 
chosen token, it can be readily used for other token shapes. 

To explore the associations among pixel elements defined 
by the token we map each pixel to a processing node and 
let the internal status of this processing node be equal to 
the intensity of that particular pixel. For instance, the 
token in Figure1.a will require 9 processing nodes, 
whereas the token in Figure1 .b needs 5 processing 
elements. In the next step, we present a communication 
model or an interconnection model for a network of 
processing elements each representing one pixel within 
the token. For completeness let us assume that each 
processing element is connected to all other processing 
elements by unidirectional links. For the token defined in 
Figure l.a, we will need 72 unidirectional links. For 
reasons that will be apparent later, we need only half of 
these links. The unidirectional links between processing 
elements -inherently those of pixels-- will store the 
associations between pixel pairs. The architecture defined 
in this way is in a sense similar to that of Hopfield [4], 
where each processing element is connected to all others 
with connection strengths T(i,j;k,l). 

Suppose pixel intensities in a block (token) are : { Vij; 
ij=l,2,. . . .q }. We can encode the larger/smaller 
information called the “interpixel connection strength” 
between pixels in this block as the signs of differences as 

T(i, j; k, I) = sgn {Vii , V,, ) where I I i, j, k, I I q 

except : (i, j) # (k, I) 
(1) 

The Signum function here is the ternary sign function of 
discrete mathematics: 

In (I) we have formulated a prescription to encode 
interpixel relationships in a block. Similarly we can define 
an ensemble inter-pixel association over P number of 
blocks, which can be the blocks obtained by sliding the 
token over the entire image. 

T,(ij;k,l) = zsgn (V{ -Vi) 
p=, 

(2) 

As it can be seen from (2) the connection strength 

T(i, j; k, 1) between the pixel at location (i,j) and the one at 
(k,l) increases if l’;j > I’,,; but it decreases if V, < Vk,, and 
remains unchanged if Vij = Vk,. Furthermore, we would 
like to point out that the connection strengths are anti- 
symmetric, i.e., T(k,l;i,j) =-T(ij;k,r). 

3. SIMILARITY MEASURE 

Suppose a token has been placed at any position in a given 
image and the pixel associations between pixels have been 
determined using (1). In this case, we can define the 
similarity measure among the initial token which has been 
stored in connections T(i,j;k,l) and a new token at another 
location by: 

E = T,y, y,F, Vi j; k, I) * sgn(V,, - V,, > 
I , k I 

If we use (2) for the term T(i,j;k,l) in (3) we can write: 

E = T4 F, 7, C wWi~ - Vj, ) * sgn( V, - v,, ) (4) 
I i k I 

It is not difficult to deduce from (4) that E will attain its 
maximum value if the two patterns are correlated with a 
correlation coefficient of “1.” But it will reach its 
minimum value if the two patterns are correlated with a 
correlation coefftcient of “-1.” Finally, E will have a 
value near zero if the two patterns are not correlated. That 
is, there is no resemblance between ordering of the pixels 
within the token. It can also be seen that the similarity 
measure we have just proposed is a correlation indicator 
function between two specific patterns. But as we will 
show later, this similarity measure is more than a 
correlation indicator. 

Now let us assume a set of P patterns are stored in the 
system using (2). Next, the token is placed at some 
arbitrary point on the image plane. Here the question will 
be the similarity of this new pattern to any one of the 
patterns stored in the previous step. We can extend the 
similarity function to search for an ensemble of patterns 
stored in connections T,(ij;k,l) via: 

E=~,~,~,~,~,Tp(irj;k,I)*sgn(Vij -V,,> (5) 
p i j k I 

When we substitute (2) in (5) we have a more explicit 
form of the similarity function: 

E = x 7, y, F,y, %n(V,P - Vi ) * sgn(V,, - V,, ) (6) 
p i j k I 

If the test pattern is equal to one of the stored patterns, say 
pI, the similarity function will be close to its theoretical 
maximum, which is simply: 

Emar =q2 -4 



where q is the number pixels within a chosen analysis 
window. 

This similarity measure is analogous to correlation in the 
case of single pattern comparisons. Furthermore, as the 
equation (6) indicate it would be more pertinent in the case 
of ensemble pattern associations. To test the dynamics of 
this similarity measure against the well-known mean 
square error (MSE) we have run a 4x4 token over the 
texture image of Figure 2 and computed the MSE and the 
proposed similarity measure values. Later we have 
computed the correlation of the errors generated by MSE 
and the outcome of the similarity measure over a sequence 
of token pairs. The results are shown in Figure 2, which 
uniformly indicate a very high degree of correlation 
between the MSE value and the SOAR similarity measure. 
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Figure 2. Left: the texture of size 32x32 pixels. Right: MSE and 
Similarit! Measure Plots. Top: MX. Middle: Similarity Measure 
and Bottom: Correlation Between the Two measures. 

As stated above the SOAR similarity measure attains its 
maximum value when the two compared patterns have a 
similar ordering of the pixels. In addition. we would like to 
point out that the SOAR similarity measure is independent 
of the mean. That is. it does not matter how much bias 
exists in the data, the ordering between pixels for similar 
textures will be the same. 

4. LEARNING AND CLASSIFICATION 

Pattern classification methods have two key components. 
They are a meaningful distance or similarity measure that 
will summarize the inter-Iintra-relations between objects 
or vectors and a method to incorporate similar objects into 
a single token that will represent the two objects reliably. 
A number of unsupervised classification/ clustering 
techniques including Generalized Lloyd Algorithm 
(GLA)[S] have been extensively studied in the literature 
and applied successfully to problems in data compression 
and pattern recognition. Here we present a learning 
scheme that will learn the interrelationships among tokens 
generated over a texture and will attempt to classify them 
into a predetermined number of classes. 

During the design of the algorithm we have chosen to 
follow the same path as the generalized Lloyd algorithm 
and replaced the computational modules with new ones 

when necessary. Before explaining the proposed 
algorithm, we would like to point out its similarities in two 
areas to the generalized Lloyd algorithm. First, both 
algorithms are iterative in nature. Second, both start with a 
rate zero codebook and higher rate codebooks are then 
designed using a splitting technique. As in the data 
compression task, splitting technique can be replaced by 
one of many initial guess codebook assignments. We 
would like to emphasize that our proposed classification 
algorithm based on SOAR has no other similarities with 
the GLA and other iterative clustering techniques. 

SOAR LEARNING ALGORITHM 

Step 0: Assume that we are given a token shape and size. 
such as a 3x3 rectangular grid and the extend of 
connectivity like full connectivity or partial connectivity. 

Step 1. Assuming P tokens are generated, set the number 
of codewords : Cword = 1 ; and compute 

Cc, = T,, (i, j; k, I) = 2 sgn(V/ - Vz ) 
r-1 

(8) 

Step 2. Split the codebook by using two masks. The masks 
M,, and M, should be logical complements of each other. 

CP&“d =C/M, . C, =C, r\M,, (9) 
Cword = Cword * 2; 

Step 3. For each token in the training set find the 
codeword which satisfies 

E mil* Tp(i.i;k,I)*wWi, -V,,, (10) 
i i t I 1 

Here p is the codebook index and we assign the token to 
the group satisfying (10) 

Step 4. Once all tokens are assigned to one of the P 
classes, we compute an ensemble association among the 
patterns assigned to each cluster using (8) for each cluster 
center. 

Step 5. Compute the Mean of the similarity values for this 
iteration. If the Mean is not significantly different than its 
predecessor go to step 3. That is. 

Where the threshold 6 is a stopping criterion as in the 
Generalized Lloyd Algorithm. 

Step 6. If the number of codewords has reached the 
maximum size allowed then exit with this codebook. 
Otherwise, go to step 2. 

To test the classification system we have used segments 
of texture images and brain images. We have choosen a 



token size of 3x3 and full connectivity among the pixels 
within the token. The token has been slided over the image 
to cover all the pixels in the image. We have generated one 
token per pixel in the image where the pixel under 
estimation is at the center of the token. The tokens 
generated have later been classified into 2 classes, 4, 
classes and 8 classes. In Figure 3 we present the results of 
this experiment with different images. 

Figure 3: Texture synthesis using a token of size 3x3 and 
codebook sizes into 2. 4, 8 and 16 classes. ( Top row: original 
image, synthesized with 2 classes. synthesized with 4 classes. 
Second row: original image, synthesized with 2 classes, 
synthesized with 4 classes. Third row: original image, classified 
into 4 classes, classified into 8 classes. Fourth row: original 
image. classified into 4 classes. classified into 8 classes) 

As in all image classsification techniques, the success of 
the algorithm or its structural dynamics can not be 
achieved by visual observations. The conclusion of that 
type would be incomplete and may signal erroneous 
messages. To explore the dynamics of our learning 
algorithm, we have traced carefully the signature of 
similarity measurements over ten iterations during the 
codebook design stage. The change in the mean similarity 
,as a function of number of iterations, throughout the 
classification process is shown in Figure 4. As it can be 
seen from this plot the mean similarity has a smooth 
increase during the iterations with the same codebook and 
has jumps when the codebook is split. This is the same 
dynamic one would observe with other 
clustering/classification systems with iterative nature. 
Using this dynamics we can conclude that the clustering 
system is converging to a solution. 
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Figure 4: Dynamics of the Classification/Learning Algorithm 
(Mean similarity vs. number of iterations) 

Conclusion and Future Work 

Here we have proposed a novel method for feature 
extraction based on interpixel relationships. We have also 
developed a similarity measure, which tends to be tightly 
coupled with the MSE distance. We have developed a 
novel clustering algorithm that stores associations between 
pixels in an ensemble of texture blocks. Although we feel, 
the foundations are properly established, there are a 
number of areas to be explored including the selection of 
different tokens, their sizes and shapes. We are also 
interested in multilevel segmentation by using tokens with 
different association ranks, distributing the information 
stored by a single large cluster center onto a number of 
sub-cluster centers and in providing a means of 
robustness. 
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