
REPRESENTATION AND ESTIMATION OF MOTION USING A DICTIONARY OF MODELS 

Daniel Luuzon and Eric Dubois 

INRS-TClCcommunications, 16 Place du Commerce 
Ile-des-Soeurs (Verdun), Quebec H3E 1 H6, Canada 

lauzon@inrs-telecom.uquebec.ca, eric@inrs-telecom.uquebec.ca 

ABSTRACT 

This paper presents a novel method for representing motion infor- 
mation based on a Dictionary of Motion Models and a Tag Image 
which indicates which motion model is used at any given image 
position. Each model is composed of low-order polynomial-based 
motion fields. The motion in most sequences can be adequately 
represented by a very small number of such motion models. We 
further present an efficient way of estimating and coding this rep- 
resentation. Comparative results are presented which indicate a 
performance superior to that of motion representations found in 
classical block-based codecs. 

1. INTRODUCTION 

In video coding standards widely in use today there is a need to 
represent the motion information that is used to perform motion 
compensated coding. This paper addresses the efficient represen- 
tation of motion information. The efficiency of the representation 
is measured in terms of its capacity to perform good motion com- 
pensation at a low coding cost. Known representation techniques 
such as those in use in MPEG-2 are not flexible enough and do not 
represent the motion in a compact enough way. 

The motion present in typical video sequences can be repre- 
sented by a few simple motion models. To exploit this fact, we 
represent these few motion models in a dictionary (or codebook) 
and assign a tag to each image position to determine which motion 
model should be used at that position. The tag information is spa- 
tially very redundant and entropy coding techniques can be used 
to encode it very compactly. 

In this paper, we wish to introduce the approach of represent- 
ing motion by a dictionary of models. We then demonstrate its 
feasibility by reporting the results of a first implementation of both 
the estimation and coding aspects of our approach. 

Countless others have addressed many different aspects of mo- 
tion representation. Some authors [7, 81 have addressed the rep- 
resentation of motion fields in parametric fashion using polyno- 
mial models of varying degree: these are however typically ap- 
plied to blocks (sometimes of varying size) independently. Others 
16, 1,2,9] have addressed the need to incorporate a rate constraint 
in the estimation of the motion information to be sent. 

However none of these methods exploits the fact that a typi- 
cally very small number of motion models can be used to represent 
the motion information effectively. 

2. REPRESENTATION OF MOTION 

For our purposes motion is mapping which relates spatial coordi- 
nates (p) in one image to spatial coordinates in another (p’): 

M;:p++p’ p=(z,y). 

A model M; is defined for all z, 1~ in an image. This kind of motion 
is often used to form a motion compensated predictor (P) from 
another image (I) as in: 

P(P) = I(P - M(P)) VP E Ri. 

where the R; partition the image into disjoint regions and a differ- 
ent motion Mi is applied to each region. In most approaches the 
regions R; are simply blocks of possibly varying size which tile 
the image. 

2.1. Motion Models 

In many current video coding contexts motion is simply modeled 
as a pure translation: 

M(p)= :I [ I 
But some [7,8] have extended motion compensation to higher or- 
der models such as: Affine Transformations, 

Bilinear Transformations, 

and even higher order models. All of these generalize to: 

M(P) = 
c, cs?m (PI 1 c, $YS-(P) ’ 

where the gm (p) are low-order polynomials as functions of spatial 
position p = (t, y). 

A motion model is then completely determined by the basis 
functions g,,, and associated model constants ~7, $,“. We also 
define the model order as the maximum polynomial degree of the 
g,,,(p), for example the Bilinear Transformarions defined above 
are models of order 2. 



Figure I: Tag Image, Dictionary and Reconstructed Motion 

2.2. Dictionary and Tags 

We define a Dictionary D as a collection of N motion models Mi 
as defined above: 

mapped to one of those levels. With the GLA, a locally optimal 
quantizer is designed by iterated improvement by applying the two 
following rules successively. 

We further define a tag map T(p) which associates an index into 
our dictionary to each spatial position in the image: 

Nearest Neighbor Partitioning In our case this amounts to as- 
signing a tag to each position associated to the Dictionary 
entry which minimizes some distortion criterion for the mo- 
tion vector at that position. 

T(p) E (1,. , N} Vp E Image. 

Figure 1 illustrates how the motion representation we introduce 
is composed of the Dictionary D and the tag map T(p) which 
together define motion over an entire image: 

where d(i!~f~(p)) is the distortion measure applied for the 
tth model at position p. E.g. 

d(Mt(p)) = W4p) - M’(P)? 

M(P) = MT(~)(P) VP E Image. for a known motion field M’ or alternatively 

In a slight refinement of the model, we may force the tag value 
T(p) to be constant inside a small block (say of 4x4 or 8x8 pix- 
els) which allows us to represent the tag map at a lower resolution. 
Note also, that even if the tag value T(p) is made constant inside 
a small block, the reconstructed motion hi(p) at the different po- 
sitions in the block may still vary. 

for an Image I and a previous reconstructed frame i (Mo- 
tion compensated Prediction error). 

Centroid Computation In our case this amounts to reestimat- 
ing the model parameters for each model in the dictionary 
based on all positions which are quantized to that model. 

3. ESTIMATION 

The estimation process produces the dictionary and the associated 
tag map. We may wish to find a representation which best ap- 
proximates a known or independently estimated motion field, or 
alternatively we might want to estimate the representation which 
directly minimizes an objective function, such as minimizing the 
magnitude of the prediction error induced by the motion represen- 
tation. 

Mi 5s min ~ c 4Mib)) Vi 
IplW)=il 

This is accomplished using a least squares fit of the model 
parameters u and the appropriate distortion measure. 

3.2. Incorporating an Entropy Constraint 

In the process of designing a quantizer it is possible to incorporate 
coding cost into the distortion measure of the quantizer. This is 
called enfropy constrained quanfizer design [4]. Its purpose is to 
find a quantizer which minimizes a distortion measure that takes 
into account the total rate-distortion performance of the encoding 
system which includes a quantization step followed by a coding 
step. 

We may view our motion representation as a form of quantizer 
where the Dictionary defines a number of representation levels for 
motion vectors. This view is not typical inasmuch as the quantiz- 
ers’ output levels vary with the position of the quantized motion 
vector, but otherwise the analogy holds. With this in mind we can 
define our estimation process as a Generalized Lloyd Algorithm 
[5] for quantizer design. 

With this approach the dictionary defines a set of representa- 
tive motion vectors at a given position, and the tag for that position 
identifies which representation level was chosen. 

3.1. Quantizer Design 

To define a quantizcr we need to specify a number of represen- 
tation levels, and also define how any admissible value will be 

As will be described in section 4, we can calculate the coding 
cost for the tag information at each position. The rate constraint 
modifies the distortion measure to bias the choice of tags toward 
those that are coded at a lower cost. This induces a modified near- 
est neighbor rule: 

d’(Mt(p)) = d(Mt(p)) + XRate(T(p)) X > 0. 

By further refinement it is possible to include a rate constraint 
which takes into account a conditional coding cost. This is referred 
to as conditional entropy constrained quantizer design [3]. 
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Figure 2: Original Motion Field and Image 

4. CODING 

To encode the representation we need to encode the dictionary D 
and the tag map T(p). Encoding the dictionary is straightforward, 
we simply transmit the coefficients us, u$ for each model using a 
fixed length representation. The tag map however is encoded in a 
more sophisticated manner. 

The tag for each position in the image is encoded using a con- 
ditional arithmetic code. Using an optimal arithmetic code allows 
us to code a tag value T(p) with approximately - log,(Pr(T(p)) 
bits. The optimal coding cost therefore depends on our model- 
ing of these probabilities. For the bitstream to be decodable. the 
decoder must also have access to identical values for these proba- 
bilities. 

4.1. 2-Neighbor Model 

We chose to model the probability of the tag T(p) at position p, as 
conditioned on values of two of its causal neighbors (tags having 
already been encoded). In our implementation we condition on 
the tags in the positions immediately preceding p in the horizontal 
(ph), and vertical (pu) directions. 

Defining for convenience to = T(p), th = T(ph) and t, = 
T(p”), and the three estimated quantities: 

Pt = Pr(tc = t) 

We define the conditional probability: Pr(to I th, t,) = PC,,“* 

1 

Pboth if th = t”, t0 E {thr to}, 

P 
(1 - pboth)& ifth = t”, t0 i?! {thr tv}, 

cond = P&her / 2 if th # tv, t0 E {thrtv}r 

(1 - Peather) l-pz~ptu ifth # tv, t0 $! {thr tv}. 

This determines a probability model for T(p) as described in sec- 
tion 4. The estimated constants Pt, Fb&h and Neither are trans- 
mitted as side information; the decoder can then evaluate the con- 
ditional probability PCond from known quantities. 

5. IMPLEMENTATION AND RESULTS 

The described estimation process and encoding scheme were im- 
plemented in software and tested under various conditions. The 
motion from various sequences was used as input to our simula- 
tions. Some parameters need to be specified to operate the en- 
coder: the number I\; of entries in the dictionary, the order 0 of 
the model (see end of section 2.1). and the block size b of the tag 
information which a single entry in the transmitted tag image rep- 
resents (see end of section 2.2). 

Figure 2 shows an original image and an independently esti- 
mated fine representation for the motion in the Flower sequence. 
Figure 3 shows a typical simulation result. We can see that a large 
portion of the image is represented by a single motion model as 
represented by a single grcy level in the tag image. We can also 
see that the motion within a region of identical tags is not constant 
but rather is varying smoothly according to the associated motion 
model. It is important to note that a single model can represent 
arbitrarily shaped and possibly disconnected regions. 

In table 1 we report on simulations using two measures to 
quantify the performance of the encoder: the total cost of encod- 
ing the motion information (measured in bits per image pixel), and 
the peak signal IO prediction error ratio (PSPR). The results are 
compared to MPEG2’s method of encoding motion information, 
both at full pixel, and at half pixel resolutions. Our 

Table 1: typical simulation results: Rate vs. PSPR 

For each MPEG-2 result, we present the result for the best sim- 
ulation parameters of our method with a rate less than that of the 
MPEG-2 result. Thus, holding the motion encoding rate constant 
we can see a net gain in prediction quality in all cases on the order 
of 2-4 dB. 



30 I 

29 - 0 

0 00 0 0 - 
0‘9 0 0 0 

28-s 8 

27 -@‘@ 0 

8 

\ 

0 _ 

26- @ 

25 - Dictionary o - 
24 +/ MPEG-2 + 

23 + 
t 

22 ’ 
0 

I 

0.05 
Rate 

Figure 4: Simulation results for Flower sequence 

This is also shown in figure 4, where all simulation results for 
the Flower sequence are shown, including all combinations of the 
parameters N E {4,16}, 0 E { 1,2) and 6 E {4,8,16}. Figure 4 
demonstrates the flexibility of the approach, where it would possi- 
ble to select different encoding parameters N, 0 and b to attain a 
desired encoding rate or prediction quality over quite a wide range 
of values: bit rates from ,004 to 0.1 bits per image pixel yielding 
PSPR values between 26.5 and 29 dB. This flexibility could be ex- 
ploited in a coder where the rates allocated to motion information 
and prediction error information could be determined dynamically 
to optimize a rate-distortion criterion, 
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7. CONCLUSION 

WC have also demonstrated that our first implementation is signif- 
icantly more efficient than MPEG-2 in terms of predicrion quality 
and coding cost. Other methods of coding the tag image still need 
to be investigated. We believe the method will show its full benefit 
when it is integrated into a complete rate-constrained coder. 
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We have introduced a new representation for motion information 
based on a dictionary of models. Our approach may apply a single 
motion model to an arbitrarily shaped region without explicit re- 
cnurse either to segmentation or contour representation techniques. 


