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ABSTRACT 

Most shift operator-based adaptive algorithms exhibit poor 
numerical behavior when the input discrete time process is 
obtained from a continuous time process by fast sampling. 
This includes the shift operator based least squares lattice 
algorithm. In this paper, we develop a delta least squares 
lattice algorithm. This algorithm has low computational 
complexity compared to the delta Levinson RLS algorithm 
and shows bet.ter numerical properties compared to the shift 
least squares lattice algorithm. Computer simulations show 
that the new algorithm also outperforms an existing delta 
least squares lattice algorithm. 

1. INTRODUCTION 

As the demand arises for faster information transmission, 
fast sampled processes and systems are becoming a neces- 
sity. The shift operator. i.e. p(t) = z(t + I), based 
methods often yield ill-conditioned processes and systems 
for fast sampling. This is a very pressing problem, since 
recently there has been a tremendous upsurge of research 
and development activities in communications. particularly 
wireless and mobile communications. Ever increasing capa- 
bility of today’s hardware has paved the way for high speed 
processing and communication. In such a scenario, the shift 
operator based algorithms would produce numerically infe- 
rior results. 

In order to alleviate this problem, the concept of 6- 
operator based algorithms where 6 = 9 has been re- 
cently introduced [2] which are numerically superior. Thus 
6x(n) = i[z(n + 1) -z(n)]. Typically if {I} is sam- 
ples of a continuous time signal, A is then chosen as the 
sampling interval. Obviously as A + 0 6 approaches the 
differentiation operator. Thus new information other than 
what is apparent in {z(n)} is obtained. 

Least squares lattice (LSL) on-line algorithm based on 
the shift, operator have been developed [l]. A similar ap- 
proach will be used to obtain a LSL algorithm based on 
the 6 operator in this paper. The parameters of the lattice 
from one stage of the lattice to the next stage will be up- 
dated. Also the parameters will be updated in time. Since 
all the updates of the least squares lattice algorithm will be 
made in terms of scalar quantit.ies only. the computational 
complexity of the algorithm is O(:V) instead of the O(N’) 
which is the computational complexity of the bb-LevinSOn 

algorithm of [3], where !V is the order of the system. 
Up to date. the only work on 6-LSL is [4]. However, the 

6-LSL of [4] h‘as no limit as the sampling period converges 
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to zero. Therefore, its improvement over the shift, LSL is 
very limited. We present a different formulation to come up 
with a LSL algorithm in the fast sampling scenario. The 
new algorithm has a limit as A - 0 and is seen to be 
numerically superior to [4]. 

2. BACKGROUND 

First let us introduce two direrence operators which will 
be used in this work. The forward 6 operator is defined 
as 6 = F and the backward 6b operator is defined as 

--L 
6b = T where q is the shift operator. The data vector 
x(k) is defined as 

x(k) +(k),x(k- l),“‘7z(k- L+ l)]’ (11 

where L is the window length. The data Inatrix correspond- 
ing to the b operator is defined as 

z;+,(k) ii [6”x(k - rt),6”--‘x(k - n). ?X(k - n)] (2) 

From the definition of the C operator, it can be seen that, 
the Z:+,(k) t rnd rlx can be decomposed as 

z;+,(k) = [6”x(k - n.) 1 Zf,(k - l)] (3) 

For the & operat.or, the data matrix is given by 

Zn+l (k) 42 [x(k). 6bX(k), 6:x(L). , b‘l’X(k)] (‘1) 

Similarly, this matrix can be decomposed as 

Z,+,(k) = [Z,(k) i b:x(k)], (5) 

Also, it can be shown that ZA+l (k) and Z,,+:(k) are relat,ed 

by 

Z:+,(k) = Z,+1(k)M, 

where 

(6) 

In [4], only the forward delta operator is used and the 
nth forward prediction error J,,(k) ,rt itc:ratiou k is de- 
fined as the error involved in predict.iug 6"x(k - n.) using 



Zt(k-1). The nth order backward prediction error b”(k) at 
iteration k is defined as the error in predicting x(k-n) using 
Z:(k) [4]. In the limit as the sampling period A approaches 
zero, the limiting backward prediction error becomes pre- 
dicting x(t) from (x(t),x”)(t),x(‘)(t),... ,x’“-‘)(t)} where 
t is the continuous time index. Thus in the limit, &(t) tends 
to zero, irrespective of the underlying system. The dynam- 
ics of the system is lost. As a result, the finite precision 
implementation of the algorithm in [4] does not give much 
improvement over that of the shift LSL for fast sampling. 

In this work, both forward and backward delta opera- 
tors are used. While the forward prediction error f,,(k) is 
the same as that of [4], the backward prediction error b,(k) 
is the error in predicting $x(k) from Z,(k). In the limit 
as the sampling period approaches zero, both forward and 
backward prediction errors involve predicting x(“)(t) from 

{x(t), x(‘)(t), x@)(t), . . . ,x(“-‘)(t)}. This is in consonance 
with 121. 

The autocorrelation matrix for the forward prediction 
(see [l] for the shift operator version) is given by 

Similarly, for the backward prediction, the autocorrelation 
matrix is defined by 

Us,ing (3) a;d defining y,,(k) = [cr,,o(k), . . . , an.,,(li)lT 

aqd a,(k) = [~n,~(k),..., CY,,+(~)]~ where a,,o(k) = 1 and 

a,,,(k) = (-l)“, the forward augmented normal equation 
can be written as 

= I I 
1 ZZT(k - 1)6”x(k - 72) 1 a&k- 1) 1 

R!,(k) 

m(k) = o 

I I 

(7) 

where RL( k) = G”xTjlc - ,n)Zz+l (k)a,,(k) is the forward 
prediction error energy. Similarly, it can be shown that the 
augmented normal equation for the backward linear predic- 
tion is 

@:+I W&k) 

Q:(k) 1 ZfWG’x(k) 

= 1 k(k) 
6;xT(k)Z,(k) 1 b;xr(k)6;x(k) 

3 (8) 

where Rb,( k) is similarly defined as the backward prediction 
error energy. 

3. ORDER UPDATE RECURSIONS 

For the forward prediction parameters, substituting (6) in 
the augmented normal equat.ion for the forward part (7). 

we obtain 

Q;+,(k)&(k) = :bfiT (9) 

where tin(k) = &f,a,(k). Vsing the decomposition of 

Q:+,(k), we obtain 

@i+,(k) [ a’$kj] = 

where c;-,(k) 2 b’z xT(k)Z,(k)&,-l(k). The above equa- 
tion can further be written as 

The above equation can be espressed in terms of @$+,(k), 

by recalling that @ffP,,(k) = M~@~+l(k).ll,, as 

(11) 

For the backward prediction parameters, the augmented 
normal equation (8) can be rewritten as 

(12) 

where a:(k) = M,;‘&,(k). From the above, ut.ilixing the 

decomposition of @$1(k) yields 

@X;,(k) 

c;-,(k - 1) 

@:(k - I)&;-,(k - 1) 1 
where cf,-,(k-1) 2 fi”xr(k-n)Z~(k-l)cll~-~(k-l). The 
above equation is equivalent to 

.6 1 %+1(k) o [ 
Or 

bf;;, a:,d,k I[ O 1 - 1): 

cb,+(k - 1) 
= (-I)“-‘Rim,(k 

- 1) 
1 (13) 

Similarly. in terms of @i+1(k), the above equation can be 
rewritten as 

I[ 

cf,-l(k - 1) 
0 1 (14) 

i-1) “--‘Rf,-,(k - 1) 



Letting dl and dz be some constants to be determined, 
multiplying (11) by dl and (13) by dz and then adding them 
together, we obtain 

rA 0 0 ... 11 
1 A 0 ... 0 

c~l(kjtdl I 0 . . . . . . an-1 0 (k) 
0 I J 

0 1 A 0 
0 0 1 0 

I 
0 0 . . dl 1 0 . = : : *La . 

(--l)“-c ... 1 

c:-, (k - 1) 

t-1) +lR!el(k - 1) 1 (15) 
. 

We want the above equation to equal the augmented for- 
ward normal equation (7) of order n. Equating the right 
hand sides of these equations and after some calculations, 
it entails that the following equation holds 

r 0 0 . . . . . . 11 
0 0 . . . -A 

dl 
1 0 . . A2 R:-,(k) : : AL-3 . :[ 1 in 

! 

d-k-j o”-L (-1)“-f ‘.’ I- C-1)” 
+ 

0* c:-, (k 1) - 

dz 

1 

0 IVf,Tl 
I[ (-l)“-‘R\-Jk - 1) 1 

= [ 3 
R;(k) 

0 (16) 

From the second row in the above matrix equation, we re- 
quire 

dl[R:-,(k) - Ac;-,(k)] + dz(-l)“-‘R:-l(k - 1) = 0 

Similarly, the first row of equation (16) gives 

R:(k) = d&-,(k) + dz&(k - 1) 

The update of the parameter a,,(k) can be obtained 
easily by equating the left hand sides of (7) and (lj), from 
where it can be obtained that dl = i. Then 

[Ri-1 (k) - +,&)I 
d2 = -A[(-l)“-‘R;-,(k - l)] 

So, the forward prediction error energy becomes 

R!,(k) = ici-,(kj 

P:-,(k) - Ad-1 (k)l b _ 
A[(-l)n-lRfL-,(k _ ,j]c”-l(k - ‘) (17) 

Similar calculations can be performed for the backward 
prediction part to yield 

Rb (k) = -_1_ [AdL(k - 1) +  (-I)+‘Rim,(k - l)] 
n 

A (-1)“R:-,tkj 

.c~-l(kj +  i “;‘(:,l li (18) 

Next, updates for the forward and backward predic- 
tion errors are obtained in terms of scalar quantities. With 

;k”+-l(n:), ;kI”,i s-b;;!‘.‘.‘,& _ n)] 
&,“z(k)r and zi+l(kj g [6”z 

, we define the back- 

ward prediction error b,,(k) e zz+l(kjah(k) and the for- 

ward prediction error as jn(k) = z~~l(k)ay,(k). Also, we 
define 

r;(k) g 
[Rf,-l tk) - AC:-1 (k!I 
[(-l)n-lR:-lCk - 111 

l?:(k) 2 
[ACk ,(k - 1) + (-I)“-‘R;-,(k - l)] 

Rf,-, (k) 

(‘9) 
as the forward and the backward reflection coefficients. From 
the order update recursions for the forward and the back- 
ward predict,ion parameters, multiplying by the respective 
data vectors we obtain 

fn-l(k) rL(k) 
fn(k) = n - Tbn-, (k - 1) 

b,(k) = 
b,-l(k - 1) r:(k) 

A 
- Tefn-dkj (20) 

The recursions for R;(k) and R:(k) from (17) and (18) can 
also be rewritten as 

4. TIME UPDATES 

(21) 

The scalar quantities ~~-1% need to be updated in time. In 

that direction, we define c:_,(k) 2 [R;-,(k) - Act-,(k)]. 

It can also be shown that &l(k) = (-l)“-‘[Aci-l(k - 
1) + (-l)“-‘Rim,(k - l)]. Note that, except a (-I)“-’ 

factor, c:-,(k) is the numerators for (19). From (LO) after 

some manipulations, it can be shown that c:-~( k) can be 
written as 

c:-,(k) = (-1)“-‘[o, a:, (k - ‘)] 

LO ... 1 -Al 

(22) 

From the definition, the autocorrelation matrix CJ~+~ (k) for 
prewindowing (~5 = k) can be time updated as 

@t+;(k) = X@:+l(k - 1) + zn+dk)z:+Jk) (23) 



where X is the forgetting factor. Using (23), (22), (14) and 
the definitions of the forward and the backward prediction 
errors, after some algebraic manipulations, it can be shown 

that the time update of c:-,(k) is given by 

cd4 = X{Acf,-l(k - 2) +(-I)“-’ 

.R:-Jk - ‘)} + (-l)n-‘fn-l(k)pr~-r(k - 1) 

= Xc;Jk - 1) + (-l)“-‘fn-l(k)pr~-l(k - 1) 

(24) 

where prf,-l(k) g z~(k)&,-l(k - 1) is the a priori back- 
ward prediction error and is related to the backward predic- 
tion error bn-l(k), defined earlier, through the conversion 
factor m-l(k) by 

h-1 (kj 
p&,(k) = r (25) 

n 

The conversion factor y,-l(k) can be updated, as in [I], by 

The recursions for the prediction error energy in (21) 
will be numerically stable as it has been shown in [2] that 

the quantity 
[I-(I-:(k!r<(k))] 

2 has a limit as the sampling 
period A - 0. Simil?rly, from (20), it can be shown that 

b,,+*(k) = ;[b,((k - 1) + *b,(k)] 

_ b,-ltk _ 1j r:+l tk) I1 - r:tk’~(k~l 

I%(k) A2 (27) 

By the definitions of the quantities T’s, it follows that lima-0 
I’cb(k) = (-l)n-‘. Thus the first term on the right hand 
side of (27) approaches the derivative of b,,(t), and (27) 
has a limiting recursion as A - 0. Therefore, (19), (21), 
(24)-(27) form the new 6-LSL that has a limit as A + 0. 

5. SIMULATION RESULTS 

The example of [3] is used here. A 4th order AR process is 
used as the input. The poles of this model are chosen so that 
they correspond to a continuous-time model with double 
poles at -3 f j3 with a sampling period A = 0.0026. They 
are driven by a zero-mean, unit variance white noise pro- 
cess. Prewindowing is used on the data, and the forgetting 
factor is set at X = 0.997. The double precision provided by 
Sun ULTRA 1 is considered as infinite precision. Computer 
experiments are written so that finite precision in terms of 
binary bits can be simulated. Floating point arithmetic is 
considered, and quantization is performed after each arith- 
metic operation. The relative error of the prediction error 
energy is defined as 

&(kj = ItR,/Wr, - tR!(kM 
tR4fW)ca 

where fp refers to finite precision and co means infinite 
precision. h(k) is the ensemble average of Re(k) over 30 

computer experiments. Figure 1 is a plot of Re(kj for the 
q-LSL algorithm [I], the C-LSL algorithm of [4] and the new 
algorithm presented in this paper versus iteration number 
k when the number of mantissa bits is 50. Figure 2 is a plot 
of time averaged &(kj from k = 250 to k = 2000 versus the 
number of mantissa bits for the three algorithms. In both 
cases, the new algorithm shows superior numerical behavior 
under finite precision. In fact, the algorithm in $j shows 
no improvement over the (I-LSL. 
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Figure 1: Ensemble averaged (over 30 runs) relative error, 
h(k), versus iteration number. 50 bits, X = 0.997 
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Figure 2: Time averaged relative error Re( k) versus number 
of mantissa bits. X = 0.997 
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