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ABSTRACT 
With reduction of the block size (increasing the number of subfilters) 
regular gmdfa can achieve low throughput delay at the expense of 
system performance. In situations where zero delay is desirable. we 
propose a new method which is not dependent on the block size. In 
addition, by using an adaptive reconstruction tilter, further 
performance gains can be achieved with minimal additional 
computation complexity. Results from experiments performed in a 
conference room show an increase in the average Echo Return Loss 
Enhancement (ERLE) of> 2.5 dB for acoustic echo cancellation over 
the traditional moving average reconstruction filter. 

1. INTRODUCTION 

The generalized multi-delay frequency domain adaptive filter (gmdfa) 
has received considerable attention in echo cancellation in recent 
years due to several advantages of the algorithm, namely, quick 
convergence. high levels of cancellation and low delay [1,4,6]. 
Systems with long impulse responses, such as loudspeaker-room- 
microphone (LRM) transfer functions, are particularly well suited to 
gmdfa, since the algorithm subdivides the estimated system impulse 
response into several smaller impulse responses (resulting in low 
delay). Also, by performing the filter coefficient adaptation in the 
frequency domain (and using normalized step sizes) quick 
convergence is achieved regardless of the condition number (i.e., 
eigenvalue spread) of the correlation matrix of the input data [2,7]. 
The algorithm is therefore suitable for speech signals, where large 
condition numbers are typical. 

The perceptual effect of throughput delay exacerbates the acoustic 
echo cancellation problem. Algorithms which use conventional 
subband filtering with delay being introduced through the bandpass 
filters or block transform filtering with large blocks often suffer from 
this disadvantage [3]. The gmdfa algorithm allows large impulse 
responses to be achieved with block processing, but where the size of 
each subfilter block can be reduced, at the expense of an increase in 
the number of subfilters. The reduction of the block size reduces the 
throughput delay although there is a limit beyond which there is a 
substantial decline in system performance due to poor frequency 
resolution. 

This paper is organized as follows. In Section 2 we briefly review the 
gmdfa algorithm. In Section 3 we discuss an alternative low-delay 
and delayless gmdfa method. In Section 4 we discuss adaptive 
reconstruction filters and apply them to regular and delayless gmdfa. 
To conclude, in Section 5 we summarize our findings and outline 
directions for future work. 

2. BRIEF REVIEW OF GMDFa 

2.1 Generation of filter output samples 

The “multi-delay” aspect ofthe gmdfa refers to the subdividing 
of a filter into multiple, delayed, subfilters. In the time domain, 
the convolution produces an output, Y,, at discrete time n 

K-l 

v,,=c W:x,,.k,< (1) 
k=O 

where the original filter of size N is divided into K subfilters of 
size R, where N=KR and Wk is the weight vector of 
subtilter k and is related to the original “full-length” weight 

vector coefficients by wk=[wkI( wk,(., . w(~+,),~ ,17‘ The 

input vector is defined as x,=]xi xi., x,_,(+,]” . A 
frequency domain version of this filter can be realized with the 
overlap-save or overlap-add algorithm 151, in which each 
subfilter and its associated block is transformed to the frequency 
domain, multiplied together, then inverse transformed. 

Specifically, the input blocks are transformed to the frequency 
domainas X =Fg\w, OskcK-I ,where F,u isthe 
DFT opera& of size M by M with coefficients 

[FM],,,= exp( -jZrtnllM) . 02 n,l< M-l and the input 
block is’extended to a size of M to avoid circular aliasing, i.e. 

xy’=,+k+,),(+, . . . ‘,,-(k+,),(+, 01’: 0 5 k 2 K-l (2) 

where M is arbitrarily taken as 2R. Similar1 . the tilter 
coefficients are transformed as x 

Wk=F,Uwk , where 

w(? =[wk,( ... w(k+r)/t-t or..~-J and Oi., represents a 

zero matrix of size i by j. 
Representing the inverse Fourier transform operator as Fz 

and the element by clement multiplication of matrices or vectors 
by @ , the transformed input and weight vectors produce the 
circularly convolved output vectors 

$k=F$Ck@‘Wk), 0 2 k I> K-l (3) 

which, with M=2R, must be stripped of the first R-l elements 
and last element to achieve linear convolution. Since the DFT is 
a linear operator, the summation of the K vectors can be 
performed before the inverse transform (resulting in a savings of 



K-l DFTs). The resulting equation describing the output at each 
iteration of the filter is then 

0 /~-I./~-I O %-I I 1Gl.R , 

.f= %,<-I 1, (4) 
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As suggested by equation 4, y^ is effectively truncated to R 
elements. Each iteration of the filter will therefore shitt the input and 
output blocks by P=R samples. Note that this results in computational 
savings, since the DFT of the input blocks can be re-used in the next 
iteration of the filter, i.e. X, at iteration s equals X,+, at 
iteration s + I, O<k<K-2 ,’ rhegenerulized multi-delay filter 
removes the restriction of shifting R samples at each iteration. The 
amount of shifting, P, is controlled by the parameter a, where 

p=Is, P,aE3 
a 

A number of points should be mentioned; firstly, a = I corresponds 
to regular multi-delay filtering and results in the least computations 
per output sample. a > I implies that more than one estimate of each 
output sample will be produced and hence there is a need for a 
reconstructionfilter to combine the estimates. Also, at each iteration, 
the immediately previous iteration’s DFT transformed input blocks 
cannot be used, rather, transformed input blocks from a iterations 
previous must be used. This means that the computational savings 
from the reuse of transformed input blocks can still be achieved, but 
the memory requirements increase a-fold. The advantage of a > I is 
in terms of increased convergence speed and higher overall levels of 
convergence. The improved performance is generally attributed to the 
ability to update the filter weights more often than every R* output 
sample. 

Let g=bO g, . . . g,.,]’ be the vector of reconstruction filter 
weights, with the constraint cr=ii g,= I : then the final output 
samples are generated by 

a-1 

v,=c g,&,),,,,+,IJ) 
ILO 

where ,‘,,H represents the r?” element of the mL iteration output 
vector, 3’ and j =remainder(sPln) + I 
current iterition of the filter and P is defined as in (5). 

where s is the 

2.2 Updating of filter coefficients 

The weight update equations use a gradient which is a scaled cross- 
corrclation between the input vector and the error vector. Cross- 
correlation, like convolution, can be performed in the frequency 
domain as circular correlation. With appropriate zero-padding, linear 
correlation is achieved by transforming the circular correlation 
samples to the time-domain, zeroing out the appropriate samples, then 
transforming the remaining samples back to the frequency domain. In 
practice, this step is often omitted, saving 2K DFTs in exchange for 
a minor degradation in performance. The resulting algorithm is 
referred to as the unconstrained gmdfrx. Writing the constraint 
operator as 

(7) 

0 
E”=F 

M-R. I 

M I I e, 

(8) 

is the frequency domain version of the error vector at iteration 
s and * represents complex conjugation. 

One of the advantages of frequency domain filtering is the 
ability to normalize the step size based on the power levels in 

each frequency bin. lfwe let T” = 
[ 
P,rl . G] 1 where P,Y,, 

is an estimate of the power level in the i” bin at iteration s: we 
can then write the normalized constrained and unconst ained 
weight update equations as Wi” =W;+pC( 7’@X;@EE‘ 

\ 
and 

Wi” = Wi+p ( T”@X@ E’) respectively, Oi;k<K-I . 

3. LOW-DELAY AND DELAYLESS GMDFa 

The throughput delay for regular gmdfa is directly related to the 
block size as D=(R-1)/f; where f; is the sampling 
frequency. To illustrate the effect on system performance of 
reducing the block size to achieve low throughput delay. Figure 
I shows the average ERLE for a system operating on 2.3 
seconds of synthetic speech as recorded in a real conference 
room. The filter has the equivalent of N=640 taps and block 
sizes are R=32, 16, 8,4,2 and I, with corresponding subfilters 
numbering K=20,40,80: 160,320 and 640 (such that N=KR). 
The average ERLE for NLMS is also plotted, as a reference 
performance level. 

There are two aspects that contribute to the delay in the gmdfa 
algorithm, filtering and coefftcient updating. Delays in filtering 
are due to the use of “future” samples of the input sequence 
(reference signal) during the blocking operation. Delays from 
coefficient updating are due to the use of future samples of the 
desired sequence (primary signal) as well as the input sequence. 

Examination of equation (2) shows that x’,“’ involves input 
sequence samples greater than n only when k=O. i.e. only the 
first subfilter makes use of future samples. This suggests the 
filtering operation can be made delayless by operating the tirst 
block in the time-domain (all other blocks continue to operate 
in the frequency domain). The coefficient update aspect is 
more problematic, since every subfilter’s adaptation is based on 
the same error vector. delined as 

e,y=[.C,;,;o . . . J;,,R.l]7’-[d,v,, . . . d.+,(.,]” (9) 

Figure 2 is a schematic representation of the use of the error 
vector in relation to the generation of the current output sample 



Figure 1 Average ERLE vs. throughput delay for 
NLMS and gmdfa with different block 
sizes (indicated by R). 

with R=4 and a=R. Examining the generation of y,, we see the filter 
coefficients used to produce E,Y are updated using the error 

vector e,$., As indicated by the vertical line representing the 
present time, some of the elements of e,,., involve future samples. 
Only by basing the update on an error vector a iterations in the past, 
do we obtain coefficient updating with no dependence on future 
samples. Hence, delayless throughput requires delayed filter 
coefficient updating. Unfortunately, this has a direct effect on the rate 
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‘igure 2 SchematIc representation ot the relatlonshlp in time 
between the error vector, e,V and the output sample ,v,,, 
with R=4 and a=R. 

of convergence, since the step size must be decreased for 
stability. (The effect of “incorrect” gradient estimates cannot be 
immediately recognized in the next iteration.) 

Figure 2 suggest an alternative method of obtaining low-delay 
gmdfa processing, without decreasing the block size: that is, 
perform the first subfilter block in the time domain and choose 
an appropriate coefficient update delay based on a tolerable 
decline in the rate of convergence. That is, the more delay that 
can be tolerated in the coefficient updates, the less throughput 
delay will result. By delaying the coefficient updates by a full a 
iterations, completely delayless throughput will be obtained. 

Figure 3 compares the performance of the new method of 
obtaining delayless gmdfa and NLMS for synthetic speech 
recorded in a real conference room. The new method averages 
approximately 3 dB/samplc better ERLE than the NLMS 
method for the first second. The major dips in the ERLE curves 
are due solely to speech power dropping between words and do 
not indicate performance degradation. 

4. ADAPTIVE RECONSTRUCTION FILTERS 

Further performance gains can be achieved by examining the 
role of the reconstruction filter, which traditionally, has been 
restricted to a moving average (MA) filter. 

At each iteration of the gmdfa’s main filter, an estimate of the 
output at a block of discrete time locations is made. An 
examination of the error variance of these estimates shows that 
the error variance is higher at the beginning and end of the block 
of estimates. This is especially evident with the unconstrained 
gmdfa algorithm, where circular correlation is used instead of 
linear correlation. Figure 4 plots the error variance as a function 
of the intra block index for synthetic speech recorded in a 
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Figure 3 ERLE for delayless gmdfa and NLMS. 

conference room, using differing amounts ofoverlap (a=1,2,4,8, 
R=l6). 



The output of the reconstruction filter at iteration s can be expressed 
in matrix notation as y ,g’.Y)7;‘“’ with the reconstruction 
vector v’“’ defined as a vedtor of iast estimates corresponding to 
the same t!,me location, 
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Figure 4Error variance vs intra block index for 
unconstrained gmdfa. 

A moving average filter, where each element of “4” is weighted by 
the same amount may not, therefore, produce the best final output 
sample, since the elements do not have the same error variance. 
Intuitively, it would be better to weight more heavily those estimates 
with the least error variance. This can be achieved through the 
familiar NLMS update equation 

&%,, p + 1) = &’ + 
,(.s)T (s) 
.I “I 

(11) 

Figure 5 compares the performance for the two different types of 
reconstruction filters, using three versions of a, based on the block 
size. In all cases, the step size was set to 0.03 125. A low step size 
value is needed, since the input to the adaptive reconstruction filter 
is almost DC (resulting in a steep error surface). As can be seen, the 
adaptive reconstruction method performs better than the moving 
average methods in almost all cases. These trials were conducted with 
synthetic speech recorded in a real conference room. These results 
were obtained using the regular (delayed) version of gmdfa. Trials 
were also performed combining the adaptive reconstruction filter with 
the delayless gmdfa. Preliminary results indicate only minor 
performance gains in this case. 

5. SUMMARY 

Two enhancements of the gmdfa algorithm were examined, 
delayless gmdfa and gmdfa with adaptive reconstruction filters. 
Zero throughput delay is possible without limiting the block size 
although convergence deteriorates because ofthe necessary step- 
size reduction. Using an adaptive reconstruction filter resulted 
in > 2.5 dB improvement in observed average ERLE Future 
work will examine the ability of the adaptive reconstruction 
filter to handle noise present in the near end speech signal. 
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