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ABSTRACT

[t is well-known that the performance of recognition sys-
tems is often largelv degraded when there is a mismatch
between the training and testing environment. It is desir-
able to compensate for the mismatch when the system is
in operation without any supervised learning. Recently, a
structural maximum a posteriort (SMAP) adaptation ap-
proach. in which a hierarchical structure in the parameter
space is assnmed, was proposed. In this paper. this SMAP
method is applied to unsupervised adaptation. A novel nor-
malization technique is also introduced as a front end for
the adaptation process. The recognition results showed that
the proposed method was effective even when only one ut-
terance from a new speaker was used for adaptation. Fur-
thermore. an effective way to combine the supervised adap-
tation and the unsupervised adaptation was investigated to
reduce the need for a large amount of supervised learning
data.

1. INTRODUCTION

Speech recognition using hidden Markov models (HMMs)
has been successfully applied to various applications. How-
ever. it has been reported that the performance of recog-
nition system is often largely degraded when testing condi-
tions, including speakers. microphones, channels, and noise
levels, are different from those with which training data
are collected. Conventionally. these differences have been
considered separately, and accordingly. different approaches
have been adopted to compensate the degradation.
Bayesian adaptation approach(e.g. [1. 2]) has been snc-
cessfully applied to speaker adaptation. In this approach.
prior distributions are assnmed for the parameters in HM Ms
and the marimum a posteriori (MAP) estumates for the pa-
rameters are calculated instead of the conventional maxi-
mum likclihood (ML} estimates. Since this approach re-
quires less amount of data than ML estimation when the
priors are appropriatelv chosen, it has been widely used
for compensating the difference in speaker characteristics.
When the amount of data is extremely small, however, the
improvement by this adaptation is rather small because the
nnmber of parameters to be estimated is usually large. For
the other mismatches. the transformation based approach
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{e.g. [3.4.3]) has been extensively studied. [t has been used
to compensate the difference due to microphones. channels.
and noise levels. In this approach, a simple transformation.
such as a shift, or an affine transformation, is defined in the
acoustic feature space or the HMM parameter space and its
parameters are estimated using the adaptation data. How-
ever, the recognition performance does not improve as much
when the amount of data is large. This is partly because
the number of free parameters s too small.

Recently, Shinoda and Lee proposed a structural mari-
murm a posteriors (SMAP)[6] approach. in which hierarchi-
cal priors are introduced to combine these two approaches.
[n SMAP, a hierarchical structure in the parameter space is
assumed and the transformation parameters for each level in
the structure are estimated. The parameters in one level arc
used as the priors for its immediate subordinate (child) lev-
els. The resulting transformation parameter. corresponding
to each HMM parameter. is a combination of the trans-
formation parameters at all levels. in which the weight for
each level autonomously changes according to the amount of
adaptation data used. Accordingly, SMAP is expected to be
more robust against the change in the amount of data than
the conventional approaches. Since the MAP estimates are
calculated and it 1s well known that the MAP estimate is
asvmptotically equivalent to the ML estimate[2], its recog-
nition performance converges to that of speaker-dependent
HMMs when the amount of data becomes large. It was re-
ported that SMAP achieved better recognition rates than
the conventional methods for both small and large amounts
of adaptation data.

In real use. it is desirable to adopt unsupervised adapta-
tion. in which no supervising information is required. In this
paper. we focus on this unsupervised adaptation scenario.
We propose a normalization technique which compensates
for the mismatch and can be used as a front-end for SMAP
approach. The experimental results showed that the pro-
posed method was effcctive even when only one utterance
was used for adaptation. Furthermore, we investigate cffec-
tive ways to combine fast supervised adaptation and on-line
unsupervised adaptation to achieve a sufficient recognition
accuracy for real use.

2. SMAP ADAPTATION

In this paper, we focus on the adaptation of the parameters
of Gaussian pdfs in continuous-density(C')) HMMs. l.et



X = (ri..... r7) denote a given set of 1" obscrvation vec-
tors for adaptation (adaptation data). Let g, be a normal
density function for mixture component m. N (X|ptm. Yo, ).
where g, is a mean vector and Y, is a covariance ma-
trix, and let ¢ = {gm:m = 1..... M} be the whole sct of
mixture components in CDHMMs, where M is the sum of
the number of mixture components in all the states in the

CDHMMs.

2.1. Mismatch PDF

At the first step in our method. each sample vector ry is
normalized into a vector g, for cach mixture component
m as lollows:

_x—1/2
Ymer = —m

(re = ptm), t=1.....T. m=1.....3.

(1)
Obviously, the pdf for ¥, = ymi.. ... ymr is the standard
normal distribution ¥ (y|0./) when there is no mismatch
between the training data and the adaptation data. How-
ever, when there is a mismatch between them. the pdf for
y is different from .V(y|0.7) for the adaptation data, and
assumed to be N(y|v.y). where v # 0 and n # [. It can
be said this pdf for y better represents the difference of
the acoustic characteristics between the training data and
the adaptation data, rather than the characteristics of the
adaptation data. Therefore, we call this pdf mismatch pdf.
We assume that the mismatch can be modeled by simpler
models than that for speech recognition. lon other words,
we assume that the number of the mismatch pdfs required
to model the acoustic difference is smaller than that of the
mixture components of HMMs. ln our method, to have a
smaller number of the pdfs. the whole set of mixture compo-
nents. G 1s divided into several subsets Gy ....,Gp. where
P is the number of subsets. and one common mismatch pdf
hp = N(ylvp.1p) is assigned to all the mixture components
in subset (.

The parameters for the mismatch pdfs can be estimated
using the EM algorithm. [t is assumed that the transition
probabilities and the weight coefficients are neglected. The
auxiliary function Q for the HMM parameters is given by:

T M
Q((;,(-}) = Z Z Ym(8) log N (re|ftim, S (2)

t=1 m=1|

where 8 = {gm, Som:m = ... M} is the current HMM
parameter set and 6 is the new HMM parameter set to be
estimated. And v, is the posterior probability of using
tixture component m at t. 'T'he relation between the origi-
nal pdf and the mismatch pdfis as follows when the mixture

component m belongs to subset (7,
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where J,, = Sm/ is the Jacobian matrix for the normaliza-

tion in Eq.(1}. Using this relation, the auxiliary function is

modified as follows:
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where m,, denotes each mixture component in subsct G,
and M, i= the number of mixture components in subset
G/,. By differentiating this equations. the ML estimates of
the parameters arc estimated as follows:
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where (ym,e — op)' is a transition of (ym,1 — ). Using the
mismatch pdf parameters. new HMM parameters. i, and
Y. are calculated as follows,

N A1/2 . -
Hn = Hmn + \—Jm Yp. ( i )

Sm = 77~pi-. me ( 8 )

et us compare this method with the Stochastic Match-
ing (SM) [4] As can be scen from Eqgs.(7) and (8), l],',,/Ql/,,
corresponds to the bias in SM, and np corresponds to the
scaling factor in SM when the diagonal covariance is used
for np. In our method. the bias for each mixture compo-
nent changes according to the variance: when the variance
is large. the bias is also large. Besides. both parameters
vy and np can be simultaneously calculated in our method.
while an iterative process is required in SM.

-
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Figure 1: Tree Structure for Gaussian pdfs in CDHMMs



2.2. SMAP Adaptation Using Hierarchical Priors

Let a tree structure lor the set ¢ be given as shown in Fig. 1.
where A is the number of lavers. Each node in the A'-th
layer (leaf node) corresponds to one mixture component of
CDIHMMs,  The root node corresponds the whole set of
the mixture components, (. Each mtermediate node corre-
sponds to a subset of (7. each of whose elements corresponds
to one of its subordinate leal nodes.

At cach node in the tree. a mismatch pdf for y. which is
shared among the mixture components in the corresponding
subset of (7, is assigned. Let N(ve. ni) be the pdf for node
k. whose corresponding subset is denoted as {mg:my =
l..... M} First. the ML estimates of the pdf parameters,
i and Jk, is calculated using the adaptation data by using
Eqs.(5) and (6).

Next, the MAP estimates for the pdf parameters are
calculated using hicrarchical Bayes analysis. For the esti-
mation at each node. the pdf at its parent node is used as
the prior distribution. Let {:V¢.k = 1,.... A’} be a node
sequence from the root to a leal. where V) is the root node
and Ny is a leaf node. Each node Ny_; is the parent node
for node Ni. Then. the MAP estimates of the pdf parame-
ters in each node are calculated as follows:

Uxbr + mhvr—

O k=1.... k. (9)
f,'k_l+rkf]k+T—:"_;%@;(lik_uk—l)(';k_yk—l)l
mwo = €+ I'x )
k=1.... k. (10)
T My
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where r > 0, £ > 1. The prior distribution for the root
node is assumed to be the standard normal pdf, i.e., vo =0,
no = I. By successively applying Eqs.(9) and (10) from the
root node to the leaf node, the mean vy and the variance
nr for the leaf node Ny are obtained. These vy and yu
are used to update the corresponding mixture components
as in Eqs.(7) and (8). We call this estimation process as
SMAP method.

Eq-(9) can be rewritten for the leaf node as follows:

N
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The mean estimated by SMAP can be interpreted as the
weighted sum of the ML estimates at the different layers of
the tree. The weight has the following characteristics:

I. At node N,. as data amount becomes larger, ') be-
comes larger. and thus, u-'j]‘ becomes larger.

2. The weight w! for an ancestor node N, decays ex-
ponentially as j becomes smaller.

These are preferable characteristics for adaptation. When
the amonnt of data is small, the ML estimates in the up-
per layers arc mainly responsible for the resulting pdf. On
the other hand. when the amount of data is large. the ML
estimates in the lower layvers are dominant. This control is
done autonomounsly.

The prior knowledge about the embedded structure in
the acoustic space should be used for the construction of the
tree structure for the set of mixture components, (i, [n this
study, the Kullback divergence between the output pdfs of
the mixture components is used as the distance measure be-
tween the mixture components[7]. The A-means clustering
algorithm is used for clustering the Gaussian pdfs.

Although this SMAP approach is not the first to pro-
pose tree-based adaptation (e.g.[8]). we believe the pro-
posed mecthod is theoretically well-defined in terms of both
the Bavesian framework and the tree construction principle.
It demonstrates these two properties well as will be clear in
the experimental result section.

3. EXPERIMENTS

We experimented with the 991-word DARPA resource man-
agement (RM) task[9]. Simultaneous recordings of five non-
native speakers (A.B.C,D.E) were coliected through two
channels: 1} a close talking microphone (MIC), and 2) a
telephone handset over a dial-up line ('T'LL). The data con-
sisted of 300 utterance for adaptation from each speaker in
each of the two channels (MIC and TEL). For testing, we
collected 75 utterances from cach speaker for each of the two
channels. The speech utterances were first down-sampled
from 16 kHz to & klz. For each frame a 38-dimensional fea-
ture vector[10] was extracted based on a tenth order 1.PC
analysis, whose components are 12 cepstral coefficients and
their first and sccond time derivatives and the first and
second time derivatives of a normalized log energy. For
recognition, we used 1769 context dependent units[10]. For
all our experiments, we used the RM word pair grammar.
which gives a perplexity of about 60. Speaker-independent
models were trained using the NIST/RM SI-109 training
set consisting of 3990 utterances from 109 native American
talkers (31 females and 78 males), each providing 30 or 40
utterances. These models were then adapted using a MAD
adaptation algorithm[2], with the data from the 78 male
talkers. to create speaker-independent male models. These
male models are used as initial models for adaptation. A
diagonal covariance was unsed for cach mixture Gaussian
component. T'he tree structure was constructed using the
speaker-independent male models. [t was a binary tree with
five lavers. In the experiments, only the mean vector. u, was
modified and the parameter 7 in Eq.(9) were fixed. The co-
variance matrix 5 was assumed to be fixed to [.

First, an on-line unsupervised adaptation method was
cvaluated. During unsupervised adaptation and testing, the
parameters were estimated on a per-ntterance basis; we first
decode the word string using the initial HMMs and then es-
timate the parameters condition on this word string. Tables
1 and 2 shows the recognition results. By using only one
utterances, the error reduction rates were 23 % for MIC and
27 Y for TEIL, respectively. [t should be noted that the ef-
feet of the proposed method is larger for the speakers with



Table 1: Recognition rates (%) of unsupervised adaptation for
MIC data

[ B[ C D ]F
ST [ 4.8 [ 51.2 | 149 | 857 [ 893 || 5.2
SMAP || 812 | 67.3 | T8.7 | 88.4 | 89.0 || 80.9

[ Ave ]

Table 2: Recognition rates (%) of unsupervised adaptation for
TEL data”

B[ ¢ [ D[ E [ Le]
SI 18.8 | 18.6 0. 35.6 | 52.6 41.3
SMAP || 67.3 | 185 T 43.1 | 70.1 57.3

“l

o Ut

lower recognition rates. For example. the error reduction
rates for speaker B were 33 % for MIC and 37 % for TEL.

For real use, the recognition rate in [able 1 seems still
rather low. In the next experiment, we examined effective
ways to combine fast supervised adaptation and on-line un-
supervised adaptation to achieve a sufficient recoguition ac-
curacy for real use. This combined adaptation process was
described as follows:

Step 1. Supervised adaptation using the adaptation data

Step 2. Unsupervised adaptation using the test data, in
which the models obtained in Step.1 are used as the
initial models

In this experiment, the supervised adaptation was carried
out using only MI(" adaptation data, while the unsupervised
adaptation was done for both MIC and TEL test data. The
recognition rates averaged over the five speakers are shown
in Table 3, in which the number of utterances used in Step |
is changed. In this table. SUP is the recognition rates only
with Step 1 and S+U is the rates obtained after Step 2.
Although this adaptation is only slightly cffective for MIC
data. its effectiveness for TEL data is clear. For example.
to achieve 60% recognition accuracy. the combined method
required only three utterances. while the supervised adap-
tation needed 100 utterances. It can be said this combined
adaptation is especially cffective when there exist other mis-
matches than the speaker differences. Tt should be also
noted that there was no degradation in the recognition per-
formance when MIC data were used for testing. i.e., when
there was no mismatch between the adaptation data and
the testing data.

4. CONCLUSION

We have presented a novel unsupervised adaptation method
using the SMAP approach. [ts effectiveness was confirmed
by the recognition experiments. Scveral problems remain to
be investigated. First. adaptation for the variances should
be examined. Second. the way to make a tree structure
that well represents the embedded structure in the acoustic
space should be further studied. Third, the effect of the
unsupervised adaptation for different kinds of mismatches
should be evaluated.

Table 3: Recognition rates (%) of the combination of unsu-
pervised adaptation and supervised adaptation

| [ Mic [ TeL ]

[No. of Utter. [ SUP [ S+U [ SCP [ 54U |
S 75.2 13
1 83.0 | 83.5 || 414 | 51.8
3 838 | 839 || 44.3 | 622
5 R3.0 | 84.2 || 47.0 | 63.0
10 R5.7 | 86.1 || 517 | 67.2
%5 86.3 | 864 || 54.0 | 69.4
50 877 | 8.8 || 581 | 133
100 904 | 904 || 621 | 155
300 94.3 | 944 || 0.8 | 846
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