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ABSTRACT 

This paper presents the 1997 BBN Byblos Large Vo- 
cabulary Speech Recognition (LVCSR) system. We give an 

outline of the algorithms and procedures used to train the 
system, describe the recognizer configuration and present 
the major technological innovations that lead to performance 
improvements. The major testbed we present our results for 
is the Switchboard Corpus, where current word error rates 
vary from 27% to 34% depending on the test set. In addi- 
tion, we present results on the CallHome Spanish and Ara- 
bic tests, where we demonstrate that technology developed 
on English Corpora is very much portable to other problems 
and languages. 

1. INTRODUCTION 

This paper presents the 1997 BBN Byblos Large Vocabulary 
Conversational Speech Recognition (LVCSR) system, with 
emphasis on our work on the Switchboard Corpus. Switch- 
board consists of spontaneous conversations of speakers un- 
known to one another on a prescribed topic ([ 11). Word er- 
ror rates (W.E.R) for Switchboard has dropped considerably 
in the last few years, from the high 70’s in 1992 to around 

or below 30% in 1997. 

We first give a brief overview of the Byblos system (Sec- 
tion 2), including a description of the signal processing tech- 
niques, the training algorithm and the language modeling 
procedures. The we focus more on Switchboard and the lat- 
est innovations that lead to improved performance (Section 
3); in particular we describe our recent experience with sig- 
nal processing and vocal tract normalization issues, speaker 
adaptation, our efforts to combine out of-domain text to en- 
hance language modeling and, finally, we present some re- 
sults on the effects of the size of the training set to perfor- 

mance. 
Also in this paper we present comparative results across 

languages for the CallHome Corpora (English, Spanish and 
Arabic). The CallHome corpora consist of conversations 
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between family members and/or friends conversing freely 
in their native language over the telephone; one side of the 
phone call is in the U.S. and the other abroad (which also 
introduces issues with noisy lines). Furthermore, because 
the two callers know each other, speech is much more spon- 

taneous than Switchboard, and we have the additional prob- 
lem of the frequent use of foreign (to the language in ques- 
tion) words. 

The summary of our:xperiments with the English Call- 
Home Corpus (Section 4) is that it is quite harder to rec- 
ognize than Switchboard. When comparing English Call- 
Home with foreign CallHome we find that technology im- 
provements are largely language independent. 

2. SYSTEM DESCRIPTION 

2.1. Signal Processing 

The 1997 Byblos system uses a single, 45dimensional fea- 
ture stream. Features are extracted from overlapping frames 
of audio data, each 25ms long, at a rate of 100 frames per 
second. Each frame is windowed with a Hamming win- 

dow, and an LPC smoothed, VTL (121) warped log power 
spectrum is computed for the frequency band 1253750 Hz. 
From this, 14 Mel-warped cepstral coefficients are com- 
puted. These coefficients together with the frame energy 
and their first and second derivatives compose the raw 45- 
dimensional feature vector. 

The feature vectors are normalized in several ways be- 
fore being used for training or decoding. The mean cep- 
strum and peak energy of each conversation is removed non- 

causally from the appropriate sub-vector. In addition, the 
feature vectors are scaled and translated so that, for each 
gender, the pooled training data has zero mean and unit vari- 
ance. 

To do the processing described above, we require knowl- 
edge of the gender of each speaker and an estimate of a vo- 
cal tract length (VTL) parameter for that speaker. We use 
a gender dependent, 128 term Gaussian mixture model, to 
compute a maximum likelihood VTL warp parameter. To 
determine gender, we use a second Gaussian mixture to es- 



timate a gender independent VTL warp, and decide gender 
by thresholding this estimated stretch. 

2.2. Acoustic models 

The acoustic feature stream is modeled in a gender depen- 
dent manner with two pairs of HMM’s, one pair for un- 
adapted decoding and one pair for adapted decoding. Pre- 
liminary decoding passes use a phonetic tied-mixture (PTM) 
model, while the final decoding pass uses a state-clustered 
tied-mixture (SUM) model. The atomic HMM is a 5-state 
chain with a minimum duration of 3 frames, and an out- 

put distribution that is a mixture of diagonal Gaussians (256 
Gaussians per mixture (phoneme) in the PTM system, 40 
per mixture in the SCTM system). Clustering is employed 
so that different HMM states may share the same distri- 
bution or the same codebook. The PTM system has 8.5- 
13.5K Gaussians (depending on the number of phonemes in 
the underlying language) and 12K distributions, while the 
size of the SCTM system is determined by the amount of 
training data available. For English (with 140 hrs of speech 
available) it has 3K codebooks (120K Gaussians) and 25K 
distributions, while for Arabic (20hrs of training speech) it 
has 1 K codebooks (40K Gaussians) and 15K distributions. 

Estimation of these HMM’s occurs in multiple steps, 
typically involving the k-means algorithm to generate the 
Gaussians and the EM algorithm to generate the mixture 
weights and re-estimate the Gaussians. Between EM iter- 
ations, the codebooks are adjusted to prevent under-trained 
Gaussians: those with fewer than IO samples are merged 
with neighboring ones, and MAP smoothing is used to inter- 
polate the variances of individual Gaussians with the pooled 

codebook variances. 

The speaker-adapted model (SA) ([3]), used in adapted 
decoding, is created by estimating for each training speaker 
a set of four transformation matrices; the components of 
each matrix are chosen so as to maximize an auxiliary func- 
tion calculated during a prior forward-backward pass, as 
dictated by the EM algorithm. Once the transformation ma- 
trices are estimated for all speakers, the means and vari- 
ances of the SA model are re-estimated to further improve 
the auxiliary function. This entire procedure is repeated 
three times to generate the final SA model. The same data 
is used for both the SI and the SA training. 

2.3. Decoding 

Decoding is done in five steps: (a) a speaker’s gender and 
VTL parameter are estimated with Gaussian mixture mod- 
els; (b) transcriptions are generated with the SI models; (c) 
MLLR adaptation matrices are computed from these (error- 

ful) transcriptions; (d) new N-best transcriptions are gener- 

ated with adapted SA models; (e) more powerful language 

models are applied to restore the N-best list and yield the 

1 -best transcription. 
Steps (b) and (d) are done in a nearly identical fash- 

ion. A first pass over the test data does a fast match to 
produce scores for numerous word endings using the PTM 
model ([4]). A second (forward) and third (backward) pass 
using the PTM model and an approximate trigram grammar 
generate a lattice including trigrams and crossword expan- 
sions. Next, a fourth pass with the SCTM model produces 
l-best and word-dependent N-best transcriptions. 

2.4. Language modeling 

Three different grammars are used at various phases of recog- 
nition. To create the lattice and N-best list, we use a trigram 
grammar created from all available training conversations 
(3.5M words for English, considerable less for Spanish and 

Arabic). The lexicon comprises all words seen in the afore- 
mentioned training data (25658 for English). 

For Switchboard, two other grammars are used for rescor- 
ing the N-best lists. The first is a variable 5-gram gram- 
mar ([7]) and the second grammar is made by adding arti- 
cles from the CNN text database to the Switchboard trigram 
in a weighted fashion according to part-of-speech (POS) 
similarity ([6]). 

3. EXPERIMENTS ON SWITCHBOARD 

3.1. VTL Normalization 

The VTL transformation is motivated by the fact that for- 
mant frequencies for different speakers lie in different places 
due to differences in the vocal tract length. Therefore, stretch- 

ing the frequency axis to account for vocal tract length can 
make the resulting spectra look more similar across speak- 
ers. The Maximum Likelihood (ML) VTL estimation starts 

from the following observation: if the best VTL stretch was 
known, we could apply the named warp to each speaker’s 
data and then build a Gaussian Mixture model out of the re- 
sulting pool of warped data. But of course we do not know 
the best warp to start with. To emulate the same process 
we start by bootstrapping the mixture model with the un- 

warped speaker’s data, and then use ML to tell us what the 
most likely warp is. 

We began by choosing an arbitrary pool of 60 conversa- 
tions per gender. Each speaker was analyzed with 13 differ- 
ent warps in the range of 0.88 to 1.12, and used the Gaussian 
Mixture to select the most likely one. The newly warped 
data was used to re-estimate the model, and the process was 
repeated 2 more times. The final model was then used as 

the “VTL warp generator” for all other training as well as 
test speakers. The results obtained with this technique are 

presented in Table 1 for 18 hours of training speech, and 
compared with a formant based VTL estimator as presented 



in ([5]). As we can see, ML-VTL clearly outperforms for- 
mant based VTL. 

Table 1: Results with VTL 

Given the good results obtained by ML-VTL we ex- 
plored with little success a number of potential improve- 
ments over the basic method. The main issues tackled here 
is whether there is any advantage in estimating VTL based 

on only voiced frames, and on whether one could improve 
performance by having more than one VTL parameter (one 
for voiced and one for unvoiced frames). We also looked 
at the effect of the quantization of the VTL warp, by refin- 
ing the initial selected stretch by decreasing the search step 
from 0.2 to 0.02 around the best estimate. Results appear 
on table 2. 

method % W.E.R 
baseline 44.26 
1. Non causal CMS 43.78 
2. Hamming window 43.74 
3. 125-3750Hz BW 42.07 
4. 25ms frame 43.72 
5. Speechfnspeech CMS 44.52 
l-4 combined 41.56 

Table 3: Signal Processing Improvements 

the similarity between the n- and (n-1)-grams. The sec- 
ond restoring grammar is made by adding articles from the 
CNN text database (141M words) to the Switchboard tri- 
gram in a weighted fashion. A separate weight is assigned 

to each CNN article based on the similarity between its 
part-of-speech (POS) n-grams and Switchboard. The final 
trigram is then smoothed with the likelihood of POS class 

given word history. Results appear on Table 4 

Table 2: Refined VTL estimation 

3.2. Signal Processing 

We experimented with a number of ideas in signal process- 
ing, namely non-causal versus causal CMS and energy nor- 
malization, hamming versus Blackman windows, analysis 
bandwidth, frame size and different CMS for speech and 
non-speech frames. The baseline includes causal CMS and 
energy normalization, Blackman window, .3-3.3KHz band- 
width, 20ms frame size. The results are summarized in 
Table 3. The system that combined all signal processing 
improvements gave a 2.7% absolute gain over the baseline, 
which is smaller than the sum of the parts, but still a very 
significant gain. 

3.3. Language Modeling 

The goal of this work is to enhance the baseline Switch- 
board trigram. Two other grammars are estimated and then 
used for restoring the N-best list (the scores from these 
grammars are interpolated to generate the final ordering of 
the list). The first is a variable 5-gram grammar obtained 
by collecting counts for all 5-grams in the data, and then se- 
lectively pruning back to lower-order grammars based on 

Table 4: Restoring with enhanced language models 

We also explored the effects of Lexicon building on per- 
formance: with a 10K lexicon the OOV rate was 2.32% and 
the error rate 40.2%; using a 25K lexicon reduced the OOV 
rate to 1.38% and the error rate to 39.3%. As we can see, 
we got an almost 1 to 1 reduction in error rate and OOV 
rate. This roughly agrees with empirical observations by 
many researchers in WSJ, that one corrects 1.2 errors for 

every OOV word that is covered. The ratio is smaller here 
because the error rate for Switchboard is much higher. 

We also see a small gain (0.5%) from segmenting the 
training conversation transcriptions at major punctuation marks 

(. ;? and !) instead at speaker turns, as was done in the past. 

3.4. Effects of training size 

The purpose of this work was to quantify the effect of the 
training data size for both acoustic and language modeling 
training (Table 5). 

The empirical fit for the language modeling training is 
that there is a 3.5% gain for every lo-fold increase in the 
training text size. For acoustic modeling, an 8-fold increase 
in the training size gave a 5% improvement in performance; 
however, at the current operating point, the performance 
seems to saturate quicker with increases in acoustic rather 

than language training size. 



60 hrs ) ;I:; 1 
140 hrs 

LM training size % W.E.R 

70K words 47.0 

Table 5: Training size and Performance 

3.5. Summary of improvements 

In the previous four sections we presented a number of indi- 
vidual improvements, with some of them evaluated on small 
training data conditions. When we trained on all 140 avail- 
able hours of speech we found that the gains were mostly 
additive. The total gain for the language model improve- 
ments was 3.4% and the gain for combining the VTL nor- 
malization with other signal processing improvements was 
5.5%. Overall, our performance improved from 36.2% in 
1996 to 27.3% in 1997. Performance on the evaluation set 
provided by NIST was slightly worse, at 35.5%. The main 
factor that accounted for this degradation is that the test set 
was from the Switchboard-II collection, which happened 

3 years later than Switchboard. As a result the language 
’ model coverage was very poor: the list of topics the speak- 

ers were involved with was very different, the OOV rate 
jumped from 0.7% to 1.7%, and 0.4% of the test words was 
so hard that human transcribers decided to mark them as 
unintelligible (they were still counted as errors though). 

CaIlHome versus Switchboard: In the 1997 LVCSR 
evaluation we were also tested on a CallHome English test 

set, and the error rate there was 53.7%. As we mentioned 
in the introduction, CallHome tests are particularly harder 
because of the very spontaneous nature of speech and the 
presence of noise on the international phone side; further- 
more, because the speakers are familiar to one another and 
use specific jargon (sometimes even in a foreign language), 
the OOV rate is much higher, at around 3.8%. To indi- 
cate how much harder the test was, 1.8% of the words were 
marked as unintelligible by human transcribers; we estimate 

that just these unintelligible words contributed 4.5% to the 
total error. 

4. MULTI-LINGUAL EXPERIMENTS 

We have found that the major technological improvements 
that reduced word error rates for the Switchboard Corpus 
(continuous densities, VTL, speaker adaptation and speaker 

adaptive training) improve performance across all languages 
we have tested so far. In other words, state-of-the art speech 

recognition technology is mostly language independent. For 
example, Table 6 gives the relative gains for speaker adap- 
tation on the development sets across the three languages: 

1 English Switchboard 1 Spanish 1 Arabic 

No adapt I 39.2% 
SI adapt 

1 64.1% 1 63.3% 
36.1% 61.1% - 

SAT adapt 34.5% 59.3% 58.6% 

Table 6: Adaptation improvements across languages 

Table 7 gives statistics on the training data size and word 
error rates for the three CallHome languages, English, Span- 
ish, and Arabic, using the NIST Spring 1997 and Fall 1997 
evaluation test sets. Although we see that performance varies 
some from language to language, we believe that most of the 
difference is accounted for by the different amounts of data 
available and statistical variability. For example, if we used 
the empirical rules presented in section 3.4, and assumed 
that equal amount of data was available as for English (140 
hrs of speech and 3.5M:words), we would expect that we 
would gain 4.9% for the additional speech and 3.9% for the 
additional language text (crossreffrence with table 5), which 
would bring the performance from 61.6% down to 52.8%, 
which is almost exactly where English currently is. 

Table 7: Performance across languages for CallHome tests. 
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