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Abstract 

In this paper, we provide a mean square analysis of 

the M-Max NLMS (MMNLMS) adaptive algorithm in- 
troduced in [l]. The algorithm selects, at each iter- 
ation, a specified number of coefficients that provide 
the largest reduction in the error. It is shown that 

while the MMNLMS algorithm reduces the complexity 
of the adaptive filter, it maintains the closest perfor- 
mance to the full update NLMS filter for a given num- 
ber of updates. The stability of the algorithm is shown 

to be guaranteed for the extreme case of only one up- 
date/iteration. Analysis of the MSE convergence and 

steady state performance for i.i.d. signals is also pro- 
vided for that extreme case. 

1 Introduction 
Several algorithms were proposed to reduce the com- 
plexity cost of the NLMS algorithm [1,2,3]. In this 
paper, we focus on two recent algorithms, namely the 

MMNLMS algorithm [l], and the Max-NLMS algo- 

rithm [2]. The M-Max algorithm updates M coeffi- 
cients out of N at each iteration. Those M coefficients 
are the ones associated with the M largest ]z(n-i+l)(, 
i = 1, .‘, N, at that iteration. The algorithm update 

equation can be written as [l] 

( w4n) + iee(nb(n - i + l) 9 

UJi(?l+l) = 

I 

if i corresponds to one of the first 
M maximaof ]z(n - i + l)], i = 1, .., N 

W(n), otherwise 

(1) 
The complexity of the algorithm, excluding the over- 

head of calculating XT(n)X(n) [l], is N + M + 1 mul- 
tiplications, N + M additions, a single division, and 
2 loga( N) + 2 comparisons at most. 

The Max-NLMS algorithm is described by [2] 

W(n) + &e(n) 

Wi(n+l) = 
if ]z(n - i + 11 =max]z(n - i + l)], 

j = 1, ..N 

I W(n), otherwise 

(2) 

For ~1 = 1, the algorithm provides the minimum abso- 
lute change in the filter coefficients at each sample time 
subject to zero a posteriori error. At each iteration, the 
algorithm updates only one coefficient which is associ- 
ated with maximum absolute value of the input data 

window. The algorithm requires N + 1 multiplications, 
N additions, a single division, and 3 comparisons. 

We will show that the M-Max algorithm reduces the 
complexity of the NLMS while preserving performance 

as close as possible to the regular NLMS. A study of 

the MMNLMS convergence properties is also presented. 
Simulation results are provided to illustrate the ad- 

vantages in performance of the M-Max algorithm com- 
pared to the Max-NLMS for M = 1. 

2 The M-Max NLMS versus the full up- 

date NLMS 
It is shown in [4] that the full update NLMS algorithm 
results in the minimum possible value of the squared 
error e2(n + 1) with p = 1. We show here that the 
MMNLMS algorithm, with its step size constrained to 
be 6, leads to closest possible performance 

to the fil NLMS algorithm when both are used with 

same step size value p. 
The Talyor series expansion of e(n $ l), the error at 

time instant n + 1, in terms of e(n), the error at time 
instant n, is given by [4]: 

e(n+ 1) = e(n) + C- 
N w.4 Aw. 

j=l awjtn) ’ 

+ ii?g &j~~~~k(n)AwjAwk + **’ 

e(n + 1) 



For the full update NLMS algorithm, Awj is given by Eq.( 1) becomes 

Awj = P 

XT b+w 
e(n)x(n -j + 1) , j = 1,2, . . . . N 

(5) 
Substituting Eq.(5) in Eq.(4) and squaring the error 
e(n + 1) results in 

e2(n + 1) = e2(n)( 1 - P )2 (6) 

The best instantaneous performance of the full update 

NLMS algorithm is achieved when ~1 = 1, which leads 
to e(n + 1) = 0 [4]. C onsider a partial update of a set 

of M out of the N coefficients; wil, Wia,. . . , WiM. At 
any iteration, the quantity Awj is given by 

Awj = 
{ 

*e(i)x(n -j + 1) 1 ifi Z ii, 
n 

(7) 
where L = 1,2, . . . . M. Substituting Eq.(7) in Eq.(4) 

and squaring the error e(n + 1) results in 

M 

c2(n+l) = e2(n)( l- 
XT&+) j=l t2 n - ‘j + ” )2 C( 

(8) 
It is clear that for M = N, Eq.(8) reduces to Eq.(6) of 

the full update NLMS. In other words, as Ey=r z2(n - 

ij + 1) approaches XT(n)X(n), the convergence speed 
of the partial update algorithm will approach that of 
the full update NLMS. In the MMNLMS algorithm, 
the M coefficients to be updated are chosen to corre- 
spond to the M largest z2(n - j + l), j = 1, ,2,. . . , N, 

thus resulting in the largest EyZ1 z2(n - ij + 1) at the 

nth iteration. Clearly, this results in e2(n + 1) being 
the smallest possible for a given M, i.e., the closest to 

e2(n + 1) for a full update NLMS. 

3 Mean square analysis of the M-Max 
NLMS 

In this section, we will study the convergence proper- 

ties of the MMNLMS algorithm. To make the analysis 
tractable, we will only consider the case for M = 1. 
Our objective is to show that the algorithm is guaran- 

teed to converge for M = 1 (provided /.I is chosen in the 
stability region) and that it will converge to the same 

steady state error as the full update NLMS. It thus fol- 
lows that the algorithm will converge for M > 1 (we 
already know it converges for M = N). 

Assuming that z(n) is drawn independently from a 
known probability density function, and defining the 
error vector V(n) = W(n) - W’, then for M = 1, 

(1 - p(n)z2(n - i + l))K(n) 

--p(n) cjN,l,j~i x(n - i + l)x(n - j + 1). 

Vj(n) + p(n)x(n - i + l)e*(n) 
l$(n+l) = if i corresponds to the maximum 

oflx(n - i + l)], i = 1, .., N 

K(n) otherwise 

where p(n) = a. In [2], it is shown that the 

autocorrelation matrix of the Max-NLMS algorithm in 

Eq.(2) can have negative eigenvalues for certain classes 
of input signals identified in [2]. This causes the di- 

vergence of the Max-NLMS algorithm irrespective of 
the step size value used. Following the same approach 
in [2], and assuming that for high order adaptive fil- 

ters XT(n)X(n) B N a:, it can be easily seen that the 
autocorrelation matrix governing the evolution of the 

mean error weight vector in Eq.(9) is R = $1, where 
I is the N x N identity matrix. Note that R is sym- 
metric and positive definite. This guarantees the mean 

convergence of the MMNLMS algorithm with a proper 
choice of the step size, irrespective of the type of the 
probability density function of the input signal (unlike 

the situation in [2]). To find a limit on the step size of 
the MMNLMS, we consider the mean square analysis 

of the algorithm. We assume that N 2 2. Let max 
be the index of the coefficient to be updated at time 

instant n, i.e., wmclz (n) is the coefficient to be updated. 

Then from Eq.(9), t i can be shown that the difference 
equation of the mean of the max - th coefficient for 
zero mean i.i.d input signal is 

E{V&,}(n + 1) = (I- W7Z + P2tl bWLl(~) 

+Ir’UZ 5 E{Via(n)} + fi2UzEmin (10) 
j=l,j#maz 

where r~ = E{t4(n)}, cmin = E{e*‘(n)}, and p = &. 

For a zero mean independent Gaussian input signal 7 “= 
362. In [2], it is shown that with the assumptions used 

here, the sequence of indices of updated coefficients is 
a Markov process with a uniform probability of select- 
ing any coefficient for updating. Accordingly, we have 

Jf-wca,(n)~ = E{Q2(n)} = C(n), Vj = 1,2,..., N. 
Thus, Eq.(lO) becomes 

w~as>cn + 1) = (1 - 2fiaf + fi2[a + (N - 1). 

Uz ])C(n)+fi2&min (11) 

The probability of updating any coefficient at each sam- 



ple time is &, therefore for j # mat 

C(n+l) = i( (N-1)E{vj2(n+l)}+E{V~a~(n+l)}) 

(12) 
Note that for Vj # ma%, E{vja(n + 1)) = E{Q2(n)} = 
C(n), the substituting Eq.(ll) in Eq.(12) results in 

C(n+l) = (l-2$!+ $ [q+(N - lb21 )C(n) 

To ensure the convergence of Eq.(13), and noting that 
fi = J&, the step size p of the MMNLMS algorithm 

should ce bounded by 

O<p< 
2Nu: 

T] + (N - 1)~: 

For a zero mean independent Gaussian input signal we 
have 0 < p < 2& The excess mean square error 

(MSE) fez(n) of the adaptive filter when the input is 
an i.i.d. signal is given by 

N 

fez(n) = u: c E{vj2(n)} (15) 
j=l 

Assuming that the step size of the MMNLMS algorithm 
is chosen such that MSE convergence is guaranteed, 
and using Eq.(13), then the steady state excess MSE 
cez(oo) of the MMNLMS algorithm has the form 

G~,M=+) = N@+) 

= 2 - &‘+m(N - 1)~;) (16) 

For a zero mean independent Gaussian input signal, the 
excess MSE of the MMNLMS algorithm (M=l) upon 
convergence is 

(17) 

In the case when all coefficients are updated at each 

iteration (M=N), i.e., full update NLMS algorithm, it 
can be shown that the steady state excess MSE is given 

by 

Eq.(17) and Eq.(18) show that the case of M = 1 and 
the full update NLMS provide similar misadjustment 
when applied under same conditions and used with the 
same step size value. Given that the algorithms are us- 
ing FIR filters of the same order, it automatically im- 
plies they have both reached the same solution. How- 
ever, and as expected, the full update NLMS algorithm 
converges faster than when only one coefficient is up- 
dated per sample time. 

4 Simulations 
In this section, we compare the performance of the 
MMNLMS algorithm for M = 1 with the Max-NLMS 

algorithm in [2]. Both algorithms will pick identi- 
cal coefficients to update (coefficient with maximum 
z(n - i + 1)). However, the update term is slightly dif- 

ferent (compare Eq.(2) for the Max NLMS and Eq.(l) 
for the MMNLMS). 
Example 1: 
It is shown in [2] that the Max NLMS algorithm di- 
verges for input signals with non-symmetric distribu- 

tion for any step size. The input signal used in [2] is a 
continuous approximation to a skewed binary distribu- 
tion with a p.d.f given by 

i 

1 
P( 

0.5 - a) ,ifl-p<x<1-p+s 

P(X)X = z(O.5 + a) , if -1-p<x<-l-p+6 
0 , otherwise 

(19) 
where 0 < 6 < /?. The unknown system is an FIR 
system with 10 coefficients and the FIR adaptive fil- 
ter has N = 10. A zero mean white Gaussian noise 
of 0.01 variance is added to the desired signal. The 
MMNLMS algorithm (M=l) and the Max-NLMS are 
used with p = 0.4 and ~M,,.+NLMS = 0.24, respec- 
tively. The input signal parameters are o = 0.02, 

p = 0.02, and 6 = 0.001 [2]. Results are obtained by 
averaging over 100 independent runs. As expected from 
the analysis, Fig.1 shows that while the Max-NLMS al- 
gorithm diverges with such input signal, the MMNLMS 
algorithm maintains stability and achieves convergence 

even when using a larger step size ~1 = 0.4 compared to 
pM,,+NLMS = 0.24. When cr = 0 and /? = 0, both the 
Max-NLMS and the M-Max algorithm converge with- 

out stability problems. 

Example 2: 
Here, we consider a white Gaussian input signal with 
zero-mean and unity variance. Both the adaptive fil- 
ter and unknown system have length 50. The largest 
possible step size for the Max-NLMS before divergence 

is pitfat-NLMS = 0.2. The MMNLMS algorithm, with 
M=l,isusedwithp= 0.8 to obtain the same level of 
steady state MSE of the Max-NLMS algorithm . The 
variance of the added noise is 0.0001. Fig.2 shows that 
the MMNLMS algorithm is twice faster than the Max- 
NLMs algorithm for this example. The same exper- 

iment is repeated for N = 5, and results are shown 
in Fig.3. The step sizes used are PMar-NLMs = 0.2, 
and JA = 0.56. The improvement attained by the 
MMNLMS algorithm tends to be marginal for low filter 
orders. This is expected since the update equation of 
the MMNLMS algorithm for M = 1 approximates gen- 
erally that of the Max-NLMS algorithm for sufficiently 
low N. This can be explained by the fact that for suf- 



ficiently small N, the difference between XT(n)X(n) 
and z2(n - mat + 1) is not significant. 

5 Conclusion 
In this paper, we presented MSE analysis of the 
MMNLMS algorithm which belongs to the family of 
algorithms that update only a subset of the adaptive 
filter coefficients at each iteration. It was shown that 

MMNLMS results in the closest performance to full up 
date NLMS for a given number of coefficient updates. 
Compared to the Max-NLMS, the MMNLMS remains 
stable for skewed probability density functions and pro- 

vides better convergence in general. The MMNLMS 
also allows the flexibility of choosing M larger than 

one. 
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Fig.2 Comparison of MSE between the Max-NLMS, 

and MMNLMS algorithm (M=l) with N = 50 and a 

white input. 

Fig.3 Comparison of MSE between the Max-NLMS, 

and MMNLMS algorithm (M=l) with N = 5 and a 

white input. 

Fig.1 Comparison of MSE between the Mar-NLMS, 

and MMNLMS algorithm (M=l) with N = 10 and a 

skewed binarv distribution innut . 


