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Abstract 

A modification to the OE IIR system structure is pro- 
posed to ensure global convergence for sufficient mod- 
eling of the unknown system. The proposed structure 
is effectively equivalent to whitening the input signal 
before being applied to the original OE setup. This 
guarantees the unimodality of the error surface for suf- 
ficient modeling. An adaptive update scheme for the 
new structure is derived based on the least mean square 

(LMS) technique. Examples are provided to demon- 

strate the effectiveness of the proposed structure under 
different conditions. 

1 Introduction 
Though adaptive IIR filters require fewer coefficients 

to estimate the unknown system, the nonlinearity of 
the OE performance function results in error surface 

that can have several local minima. Gradient search 
techniques are commonly used in the OE formulation 
and are known to easily converge to a local minimum 

when initialized in its neighborhood . The failure to 
reach the global minimum leads to suboptimal solutions 

of the adaptive filtering problem. This fact, is a major 
limitation restricting the commercial use of the OE IIR 
adaptive filters. 

Some remedies were proposed but the problem is far 
from being completely resolved [l]. Those techniques 

basically revolve around using the equation-error for- 
mulation (EE) (it has a quadratic MSE function but 
leads to a biased estimate of the adaptive filter coef- 

ficients) first and then gradually shifting to the OE 
structure. Performance depends on how the decision 
to switch from EE to OE formulation is made. Conver- 
gence to the global minimum is thus not generally guar- 

anteed and sometimea stability problems result when 

the equation-error biased global minimum falls outeide 
the stability region. 

Sufficient conditions for the unimodality of the error 
surface exist. It has been shown.that the error surface 
of a sufficient order IIR filter, i.e. with enough poles 
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and zeros to model the unknown system, has a unique 
minimum when the input is white [2] (this is shown 
to be always true for first and second order IIR filter, 
and true with a mild condition for higher orders [3] ). 
When the input signal is correlated, local minima may 
appear [4]. 

In this paper, we address the problem of local min- 
ima in OE IIR filters from an algorithm-independent 
perspective. Given that a unique optimum results for 
white input sufficient order, we propose first a structure 
that incorporates a whitener to transform the input sig- 
nal to the unknown system and adaptive IIR filter from 
a correlated one to a white one. The proposed struc- 
ture is practically limited, and therefore, a modified 
setup is presented to closely approximate the original 

one for slow adaptation. The least mean square (LMS) 
update equations are derived for the coefficients of the 

simplified structure. 
The proposed simplified setup can also be viewed as 

a filtered-X IIR setup with the filter being an adaptive 
whitener of the input signal instead of a fixed correlat- 
ing filter in the standard FIR Filtered-X structure [7]. 

2 The proposed modified OE formulation 
The unknown system to be identified here is assumed 
to be a general ARMA system. The output of the adap- 
tive filter in Fig.1 is given by 

d(n) = eUj(n)d(n -j) + Fbj(rI)Z(7l- j) 
j=l j=O 

= A(q-‘, n)(i<n) + B(q-‘, n);(n) 

= AT(n)fi(n) + BT(n)X(n) 

= CDT(n)+(n) 

where A(q-‘, n) = CM= j’ 1 aj(n)q-j and B(q-‘, n) = 

~~=~’ bj(n)q-j where q-j is the delay operator, 
aj(n) and bj (n) are the coefficients of the adap- 
tive IIR filter computed at time (n), o(n) = 



[AT(n), BT(n)lTI 
A(n) = 

e(n) = ifiT( XT(n)lTI 
[al(n), m(n), , . , a&(n)1 , B(n) = 

[h(n), b(n), . . . , bfiml(n)l Tj a,(n) = [ci(n),i(n - 

2), . . .,c&n --h)lT, and X(n) = [z(n),t(n - 

11,. . .1 t(n-N+l)lT. Th e output-error (OE) in Fig.1 
is defined by 

e(n) = d(n) - B(n) (2) 

where d(n) is the output of the unknown system and 

is given by d(n) = CyzI aJd(n - j) + Cy=;’ bJt(n - j) 
where aJ’ and bj’ are the coefficients o / the unknown 
ARMA system. The coefficients of 03 and b; are 

to be estimated. We assume that the adaptive fil- 
ter appropriately models the unknown system, i.e., 
n* = rnin(fi - M, 3 - N) 2 0. This is commonly 
known as the “sufficient order” case of the OE setup. 

A fundamental characteristic of the OE formulation is 
the possible existence of local minima. Stearn [2] con- 
jectured that for n* >_ 0 and with a white input signal, 
the error surface has a unique global minimum. Fan 

and Nayeri [3] -h s owed that Stearn’s conjecture holds 

only for first (it4 = 1) and second (&f=2) order IIR 

filters . They showed that for higher order (M > 2), 

sufficient modeling adaptive IIR filters, and a white in- 
put signal z(n), the unimodality of the error surface 

is guaranteed by an additional constraint presented by 
Soderstrom and Stoica [5], namely N-M 1 0. Clearly, 
the nature of the input signal is a vital factor in de- 
termining the unimodality/multimodality of the error 
surface. A second order example was constructed in [4] 
to show that with a sufficient order case and a colored 

input, the error surface can be multimodal. Given the 
earlier results on white input, sufficient order, it fol- 
lows that if the colored input signal is transformed into 

a white one before being applied to the setup, then the 
performance surface will have a unique minimum. 

Based on the above discussion, a straightforward 

solution is to insert a “decorrelator” block 8s shown 
in Fig.2. The output of the decorrelator is given by 

xl(n) = Q(q-‘,n)z(n), Q(q-‘, n) = I- CEl ci(n)q-’ 
and the coefficients ci(n),cz(n), . . .,c~(n) are adap 
tively adjusted to minimize the mean squared error 

E{ z?(n)}. Assuming the adaptive decorrelator has 
converged to the set of optimal coefficients that prc+ 
duce the minimum of E{ zy (n)}, and if the decorrelator 

filter is of sufficient order to whiten z(n), then z/(n), 
the input to the adaptive IIR filter and the unknown 
system, will consist of white samples. The performance 
surface will be reshaped to a unimodal one. However, 
the structure in Fig.2 is practically very limited since 
the decorrelator alters the input to the unkrrown sydcm 
as well 8s the adaptive filter. Also, it does not retain 
the input/output relationship of the original structure 
of Fig.1. Note that at steady state, the adaptive IIR 

filter and the decorrelator coefficients converge and can 
be treated as time-invariant systems. Under such con- 
ditions, the structure in Fig.2 is equivalent to the struc- 

ture in Fig.3. For slow adaptation, Fig.3 setup closely 
approximates the one in Fig.2. Upon convergence, the 
two structures asymptotically behave the same. 

Analogous to the setup in Fig.2, the objective 
function in Fig.3 structure is to minimize the MSE, 

E{e;(n)} where 

eA4 = 4(4 - &(n) (3) 

and d,(n) = &‘(q-‘)( A(q-‘, n)d(n) + B(q-‘, n)+(n)) 
To simplify the adaptation mechanism, we assume slow 
adaptation of the adaptive IIR filter coefficients such 
that 

d;(n) = A(q-‘, n>a,Cn> + B(q-‘, n)z,(n) (4) 

where z,(n) = &*(q-‘)z(n) and d;(n) = Q’(q-‘)d(n). 
Note that we assumed that the decorrelator has con- 
verged to the optimal filter E{Q(q-‘,oo} = Q*(q-‘). 
The least mean square (LMS) method is used to min- 
imize asymptotically the mean squared error (MSE) 
of the OE in Eq.(3), i.e., E{e;(n)}, relative to o(n). 
Thus, the resulting approximate stochastic update is 

ae: (4 @(n+l) = @(n)-Pao(n) 

= a4 (4 @(n) + 2wf (n)o(n) (5) 

The step size /J is usually small in the IIR filtering 
ap-plication, then o(n) cd O(n - 1). . . X O(n - M), 

.wk-wi, j=l,2, .,., &and 

ah (4 -in 
- R *f(n) + A(q-‘, n)a 
M(n) (6) 

where !&f(n) = [dj(n - l),d;(n - 2), . . . , d,(n - 

Qi), z/(n), zj(n- 11, . . . , z,(n - fi + l)lT. Substituting 

Eq.(6) in Eq.(5) gives the update recursion of the OE 
LMS algorithm of the structure of Fig.3, 

@(n + 1) = B(n) + 2p$(n)e,(n) (7) 

where *i(n) = 1 t l-A(*-‘,“)T*f(n)* A more 

practical approximation is to obtain the com- 

ponents of !$(n) from the following equations 

.gn - i) = t&q (n - 4 J$(n - j) = 
1 

{l-A(q-l,n-j)jditn -j)wherei=O,l,..., #-1,and 

3 ‘= 1,2,..., &. The LMS algorithm is also used to up 
date the linear predictor coefficients. Taking the gra- 
dient of z;(n) with respect to ci(n),i = 1,2,. . ., K, 
yields the LMS adaptation equation of the decorrela- 
tor coefficients: 



C(n + 1) = C(n) + Q,zf(n)Xp(n) (8) 

where Xp(n) = [z(n - l), t(n - 2), . . . , z(n - I’)lT and 

c(n) = [cl(n), c2(n), . . . , w(n)lT. 
The coefficients of the adaptive IIR filter of Fig.1 

Cl(n) are adjusted to minimize the square error of 
Eq.(2). Following the same derivation procedure of the 
LMS IIR filter of Fig.3, we get O(n + 1) = o(n) + 

2wwsQf(n)e(n), where Qf(n) = (l-A(:-l,n))*(n). 
The nonquadratic nature of the resultant MSE func- 

tion complicates the convergence of the LMS method 
leading the algorithm to converge very slowly. Fol- 
lowing the approach in [6, p.26-291, an RLS version 

of the proposed algorithm can be derived by minimiz- 
ing the objective functions fLS(n) = CyCl A”-‘(d,(i)- 

d;(i/n+l) )2 and CL+(n) = Cyzl X”-‘(z(i)-CT(n+ 

l)Xp(i) )2 where d;(i/n + 1) = Q*(q-‘)( A(q-‘,n + 

l)d^(i/n + 1) + B(q-‘,n + 1)x(i) ) and X is an expo 

nential weighting parameter, 0 < X < 1, d^(i/n + 1) 
is the output of the adaptive filter at zrne i using the 
coefficient vector 0 (n + 1). 

3 Simulations 
In the following two examples, the desired signal has 

an additional zeromean white Gaussian noise of 0.0001 
variance. Results are obtained by averaging over 50 en- 

semble average. 
Example 1 
In the first example, the system to be modeled is 

H(z) = 1-1,4r-~+0,49Z-1 and the adaptive filter trans- 

fer function is H(z,n) = l-.,(,,,“~rl’.,(,,,-~. The in- 

put signal is obtained by passing a zero-mean uncorre- 
lated Gaussian signal with unity variance through the 
colouring filter (1 - 0.7~-‘)~(1 + O.~Z-‘)~ (SNR=43 

dB). The resulting error surface has two minima 
The global minimum is located at [bo, al, az] = 
[ 1,1.4, -0.491, and the local minimum is approximately 
at [-0.22, -1.35, -0.491. Both algorithms of Fig.2 and 
Fig.3 are used with the same step size p = 0.002. 
The whitening algorithm step size is set to /+ = 
0.01. The initial point for both algorithms is given by 

[ho(O), al(O), az(O)] = [0, -1.4, -0.51 which was chosen 
near the local minimum. It is found that a decorrelator 
of length 20 is sufficient to whiten the input signal. Re- 
sults are shown in Fig.4 (a). The structure in Fig.3 is 

seen to converge to the global minimum whereas that 
of Fig.1 converges to the local minimum. It is impor- 

tant to examine the influence of the whitener order on 
the performance of the proposed algorithm. The above 
example is repeated with K = 5. The step size used 
with the whitener is p’p = 0.01. Fig.4 (b) demonstrates 

the insufficiency of the whitener order to generate a 
unimodal error surface. The local minimum still exists 
and, as expected, the algorithm converges to it. 

Example 2 
To demonstrate the applicability of the proposed struc- 
ture in Fig.3 for higher order filters, we consider a 

third order IIR filter, H(z) = 0~5-0~4z-‘-1~s3r-3-z-’ 
l-0.52-3 

and that of the adaptive filter is H(t,n) = , 
bo(n)+b,(~)z-‘+ba(n)z-~tb~(~)z-~tb,(n)z-’ 

1-al(n)z-‘-aa(~)z-~-03(n)z-3 * Note that 

fi = 5 and M = 3. Accordingly, fi - M > 0. 
The transfer function of the coloring filter is (1 - 

0.7~-‘)~(1 + 0.7~~~)~ (SNR = 43dB). All coefficients 
are initialized to zero. Results when applying the LMS 

and RLS update algorithm of the structure in Fig.3 
are shown on Fig.5. The order of the decorrelator is 
K = 20. The step sizes were ~1 = 0.0008 and pp = 0.01, 
and the forgetting factor is X = 0.99. Fig.5 demon- 
strates the convergence of the proposed structure in 
Fig.3 to the global minimum for higher order cases 
without problems. 

4 Conclusion 
We proposed a new OE IIR update structure that basi- 
cally whitens the input signal. The new structure guar- 
antees that the adaptive updating algorithm operates 

on a unimodal surface, provided sufficient whitening 
of the input signal, without altering the input to the 
adaptive filter and unknown system. Performance of 
the proposed structure was confirmed through simula- 
tions. 
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Fig.1 
model. 

Output-Error IIR adaptive formulation 

Fig.2 The proposed new structure for OE IIR adap- 

tive filtering. 
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Fig.3 Approximate of the new structure for OE IIR 
adaptive filtering. 
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Fig.4(a) Comparison znzble average o;:(n) 

between the structures of Fig.1 and Fig.3, using the 

LMS algorithm and with K = 20, for the first exam- 

ple. 
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Fig. 4(b) Ensemble average of A(n) of the struc- 

tures of Fig.3, using the LMS algorithm and with 

K = 5, for the first example. 
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Fig.5 Ensemble average of A(n) of the structures of 

Fig.3, using the LMS and RLS algorithms, for the sec- 

ond example. 


