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ABSTRACT We introduce a new zerotree scheme that effectively
exploits the inter-scale self-similarities found in the octave decomposition by
a wavelet transform. A zerotree is useful to code wavelet coefficients and its
cfectiveness was proved by Shapiro’s EZW. In the coding scheme, wavelet
coeflicients are symbolized and then entropv-coded. The entropy per
symbol is determined from the produced symbols and the final coded size is
calculated by multiplying the entropy and the total number of symbols.

In this paper, we analyze symbols produced from the EZW and discuss
the entropy per symbol. Since the entropy depends on the produced
symbols, we modity the procedure of symbol generation. First, we extend
the relation between a parent and children used in the EZW to raise the
probability such that a significant parent has significant children. ‘The
proposed relation is flexibly extended according to the fact that a significant
coetlicient is likely to have significant coetticients in its neighborhood.

Qur coding results are compared with the published results in paper |1
and improvements come trom the use of lower entropy per symbol. We also
give the comparison of the number of produced symbols.

KEYWORD: image compression, wavelet transform, zero-
tree coding

I.  INTRODUCTION

In the wavelet-based coding, dependencies among bands
using quadtrees were cxploited in EZW(Embedded Zerotree
Wavelet)'!l, SPIHT(Set Partitioning In Hierarchical Trees)?,
SFQ(Space Frequency Quantization)™; that is, one coefficient
at a given band is related with four coefficients at the same
spatial location at the next finer band in terms of a relation
between parent and children and the relation is applied for all
coefficients except for DC coeflicients. The EZW coder was
designed by Shapiro who first applied an embedded zerotree
using a wavelet. The algorithm is based on three concepts; 1)
prediction of the absence of significant coefficients across scales
by exploiting the sclf-similarity inherent in images 2) successive
approximation for decoded coefficients 3) adaptive arithmetic
coding for the strecamed out symbols.  After that, Said and
Pearlman published their great work — SPIIT — that gives nice
performances and fast processing. Thev use three hists to find
significant coefficients in bands; 1) an LIP for insignificant
coeflicients 2) an LSP for signiticant coefficients 3) an LIS for

insignificant descendants. The LIS includes two kinds of

information for the descendants at the forms of type A or type B.
The three lists are identically duplicated in a decoder by the
transmitted bit stream. In the EZW and SPIHT algorithms, their
merit is on the termination ability at any point that an
encoder/decoder wants to stop, and the decoder reconstructs an
approximated image from the information he has received. This
property 1s clearly desirable when we consider of our
constrained communication channels. More recently, 7.Xiong
et. al. published an SFQ algorithm that surpasses the EZW and
SPIHT in performance and there are two versions according to

wavelet decompositions. One of them uses the octave band
wavelet and the other uses the wavelet-packet. They get a coding
performance while pruning branches from trees in a rate-distortion
sense and scalar-quantizing the coeflicients at the survived nodes.
The decision to prune a branch or not depends on the pre-assigned
bit budget and comparing of costs between pruning and non-
pruning.

Most of coding schemes have two common procedures; 1)
symbol generation (model transformation) and 2) entropy coding
of the symbol stream. The svmbol stream is produced for the
purpose of representation and then symbols are entropy-coded. In
this paper, we introduce a new zerotree scheme that lead lower
entropy and thus more compression. Since the entropy per symbol
is determined by the probabilities of produced symbols, we thus
modify the procedure of the symbol generation with flexible
treeing. The tree is flexably designed in view of entropy. In the
1:ZW scheme, a node on a tree branches out into four nodes and
this relation is referred to as a fixed relation in the sense that the
relation is not changed. On the other hand, our proposed relation
1s referred to as a “flexible tree™ in the sense that 4 node on a tree
branches into basic four nodes and flexibly extends its branches to
nodes in neighbor. The idea to the tlexible tree comes from how
to extend more branches.

I[I. ZEROTREE BASED COMPRESSION
1. Embedded Zerotree Wavelet coding

Jerome M. Shapiro {1] developed an algorithm that exploits a
relation between subbands in image compression.  In the
algorithm, zerotrees have been combined with bit plane coding
and demonstrate the effectiveness of wavelet based coding. The
algorithm is based on the zerotrees that etliciently represent many
insignificant coefficients. As wavelet coeflicients are located
having some dependencies in bands, the dependencies are well
exploited with a quadtree structure. The compression has three
step procedures: 1) wavelet decomposition 2) symbol generation
3) entropy coding. We brietly review the coding algorithin and
discuss produced symbols and its entropy. To describe the
compression scheme, we quote several definitions - like parent,
child, ancestor, descendant, root ete. - from the reference [1).

There are two tvpes of passes performed: 1) a dominant pass
2) and a subordinate pass. The dominant pass finds significant
coeflicients to a given threshold, and the subordinate pass refines
all significant coefficients found in all previous dominant passes.
We use four symbols to tell 4 dominant pass to a decoder. A ZIR
symbol is used for a zerotree root that is insignificant and has no
significant descendants. One more needed symbol is an Isolated
Zero symbol (named 17) used when a coefficient is insignificant
but has some significant descendants. Besides the symbols, two
symbols are used for a significant coeflicient — POS and NEG



according to its sign. After all, the use of ZTR and IZ symbols
15 to inform locations of significant coeflicients (POS and NEG)
as efficiently as possible.

After a dominant pass, a subordinate pass is performed in
order to refine the coefficients found to be significant in the
previous dominant passes and these two passes are entropy-
coded with an adaptive arithmetic coder!”.

2. The Shannon’s entrepy

As we reviewed in the previous section, a symbol stream is
produced trom the alternate passes and then the stream is
entropy-coded for more compression. In this sub section, we
briefly study the Shannon’s entropy theorem to analyze the
symbol stream.

LetS = {5, 52,
{.l,', .’!'3., ....,d,'}, ada
1s also called the data length of D), the probability distribution
of the symbol set S in the data /) is the collection of positive
numbers P = { p;, p2, ....,ps}, one for each symbol, defined by

pi=l{dieDidc=1s:} 71, fori =12+ n (0
It the probability distribution is the only assumed redundancy
information, the pair (S,P) is called a zero-order Markov source.
The data sequence D is called a zero-order Markov sequence.

Using the above notations, the (zero-order) entropy of the
data sequence D is defined to be

ed) —2pi-log:ap. (2)

.., $,} be a set of n symbols. Given D = {

set of [ symbols in 4 sequence (the number /

3. A relation between the number of symbols and its entropy

With the Shannon’s entropy, we consider a relation
between the number of symbols and its entropy. The entropy
per symbol largely depends upon occurrence probabilities of
symbol alphabets and thus the final coded size is calculated by
multiplying the average entropy and the number of svmbols.
Therefore, we can achieve more reduction in final coded size
with two ways; one is to reduce the entropy per symbol and the
other is to reduce the number of symbols.

We assume two particular source models for this
discussion. Both models are composed of two symbols (S; and
S:) but the probability distributions and the numbers of symbols
are ditferent. Assume the first mode] has ten S; and ten Sz In
this case, the probabilities of symbols and its entropy are
calculated by using equations 1 and 2. The model is assumed to
be uniformly distributed and the entropy is 1 bit/symbol.
Therefore, we should use 20 bits for the model. On the other
hand, we assume the second model that has five S; symbols and
20-bit budget. In this case of the model, we consider how many
S; svmbols we can insert in the 20 bits. Using the equations 1
and 2, we can insert, at least, 20 S, symbols into the source.
Therefore, the tinal output sizes are the same at 20 bits though
they have different source length of symbols. It is important to
compare the difference between the two distributions; in the
second model, five S; has a worth of ten S, if we consider only
the number of symbols. If the replacement is accomplished
without any deformation of the contents, our attention will go to
the number of symbol to be replaced. When we accomplish the
replacement in smaller number than two, we do expect more
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compression with less cntropy although the total number of
symbols are increased. This consideration 1s discussed in the next
section with more detailed example and we will apply to the IZW
by using our flexible tree structure.

III. A FLEXIBLE RELATION IN PARENT-CHILD
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illustrating relations between parents and thewr children . . )
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Figure 111 - 1. An example to explain a ditference between the 1-4 relation and 1-9
relation.

Table [1I-1. The possible numbers of ZTR according to the vaniable numbers ot 17 for 4
given budget (80 bits)

Cases' #of #of Hof ' #of Total#of: Entropy °Codedsize
" POS | NEG 17 [ ZTR : spmbols : (bits/sym)  (bits)
1 10 10 1010 40 2.000 80
2 10 10 9 12 41 1 1992 80
3 10 10 & 13 41 1.978 80
4 10 10 7 .14 41 19s8 80
5 10 10 6 115 41 1929 ;80
6 10 10 5 18 43 1.866 K0
7 10 ; 10 ; 4 @ 21 45 1.788 80
8 10 i 10 i3 25 48 . 1683 . 80
9 10 110 2§30 52 1 1553 1 80
10 10 : 10 1 {38 59 0 1377 ¢ 80

numericalrelations between 1IZ and ZTR for a targat
blts (88 buts)

As reviewed in the previous section, a dominant pass in the
EZW tells where significant coefficients with respect to a given
threshold exist and which signs they have. In the pass, we use
four symbols — ZTR, POS, NEG and I7. — to inform the locations
and signs. Once an image is decomposed using a wavelet, the
number of significant coetlicients is decided. Therefore, it is the
number of ZTR and IZ to decide length of a symbol stream and its
entropy. We now consider the occurrence of these symbols.
While a ZTR is produced when a coefficient and its descendants
arc insignificant, an IZ is produced when a coefficient is
insignificant but some of descendants are significant.

Assumed that the numbers of POS and NEG are fixed as ten
respectively, table [I-1 shows relations in number between ZTR



and I7. for a targeted budget (80 bits) in the views of numerical
and graphical charts. As we can see in the table, when the
numbers of [Z, are decreased at a rate of one symbol, see how
many 7. TR can be coded into a stream. For a clear comparison,
we give our altention to only the cases 1 and 10. In the case 1,
the number of IZ are ten and therefore ten ZTR can be coded for
the target size (80 bits). On the other hand, there is only 1 [Z
and thus 38 ZTR can be coded for the same target size in the
case 10. Although their target sizes are the same, we can code
the ditferent number of symbols. Comparing with the case |,
the case 10 can be interpreted as the decreased nine I7. symbols
are replaced with the increased 28 ZTR symbols. The ratio 28 /
9 means that one 17 has the worth of 3.1 ZTR symbols.
Therefore, we conclude a fact that it is more effective for an
entropy coding to use three ZTR rather than one IZ, if and only
1 possible.  Our interests are then on a possibility to such a
symbol replacement and a ratio in the replacement.

To implement the symbol replacement, we have two step
procedures; one is to decrease the number of IZ symbols and the
other is to replace them with several ZTR symbols in order to
compensate the decrease. We first suggest a solution to
decrease 17 symbols. An insignificant coefficient is coded as an
1Z. when some descendants are significant. In other words, the
occurrence of IZ is caused from one reason that the significant
descendants belong to the insignificant ancestor. Therefore, a
simple solution is to suppress the occurrence; let the significant
descendants belong to a significant ancestor. 1t is only possible
that the descendants have a power to select their ancestors. In
the EZW. the relation does not allow such a selection and
always maintains one parent to four children; this is referred as
a fixed relation. The relation can be modified with another form
so that some children can select their parent. Selecting a parent
means that there should be several candidates for the parent and
we can imagine that a modified relation must have an
overlapped form. It can be made in various forms. One of them
is suggested in figure I-1 (4). Four parents are displayed in the
parent level having their own shapes. These shapes help to
understand the relations between parents and their children.
Each parent has nine children respectively and some children
are shared by several candidates to be their parent; that is, a
child can belong to one or more parents. In other words, we can
scan a child after a parent among all candidates. This is referred
as a modified relation; one parent-nine children.

We give a simple example to explain the modified relation.
Assume that there are two parents at parent level — one is
significant and the other is insignificant — and six significant
children (named as C1 to C6) in child level as shown in the
figure -1 (b) and (¢). Our goal is to find all significant
coefficients according to the scanning order that we do not scan
any children before any parents. We will use two relations to
find them; the fixed and the modified relations. We have seven
coefficients — one parent and six children — to be found as
significant coefficients. We first find them with the fixed
relation as shown in figure [TI-1 (b). The significant parent P2
has four significant children and they are scanned under P2.
However, the insignificant parent Pl has also two significant
children: thus the parent should be symbolized with an [7
svmbol to find these two significant children. Therelore, we

make a symbol stream in this casc — IS (at parent level) SZ.SZ,
SSSS (at child level), where S,1,Z mean a significant coefficient,
an isolated zero and a zerotree root respectively. The stream has
seven S, three Z and one [ symbols. On the other hand, when the
modified relation is applied to the example as shown in figure 1l-
1 (¢), all significant children belong to one significant parent and
thus we need no IZ symbol. In this case, the symbol stream is
output as ZS (at parent level) ZZZSSSSSS (at child level); seven
S and four 7 symbols. As was shown in the above explanation,
two symbol streams were obtained for the same example by using
two different relations. We knew that a relation between a parent
and its children plays an important role in producing a symbol
stream. According to specific relations, the kind and the number
of produced symbols are ditferent and thus the resulting entropy is
different. In the cases of (b) and (c¢), entropies are 1.157
bit/symbol and 0.946 bit/symbol respectively. Their entropy
coded sizes are 11.57 bits and 10.41 bits. Comparing those two
streams, we conclude that one [ symbol in the case (b) was
replaced with two Z symbols in the case (¢). After all, when we
change a relation with another, an important thing is how many Z
symbols are increased instead of decreasing I symbols. The ratio
between the increase and decrease will be an important factor lor
an entropy coding.

To decrease the ratio, we again change the modified 1-9
relation with a flexible relation. Tn the previous example, the 1-9
relation was more efficient than the fixed relation as no use of 1
symbols. However, that is only the special example to explain a
relation between [ and 7, symbols in numbers. [f the P1 were also
significant in the example, the symbol stream of the case (b)
would not have included any I symbol and thus only two Z
symbols are needed for the case. This means that the modified
relation is not always better than the fixed relation is. Therefore,
we need a general relation to compromise these two relations.

We exploit the dependencies in neighboring coefticients for
that purpose. This can be realized by using a llexible relation;
that is, the number of children a parent has is variable at a bound
between four and nine. To define the flexible relation, we divide
nine children into four groups that are named as (G1,G2,G3 and
(G4 as shown in figure [I-1 (d). A parent has the first group G1
and selectively has the rest groups of G2,G3 and G4; where cach
of rest groups — G2 ,G3 and G4 - is selected only when the first
child in each group is signiticant. For example, G2 is selected
when C2 is significant; in this case, the parent has G1 and G2
groups and six children C1 to C6 belong to the parent. Therefore,
the Gl should be scanned before G2,G3 and G4. After all,
selections of the rest groups G2,G3,G4 are determined by the
significance of the children C2,C4,C5 in Gl.

Back to the previous example, we apply the flexible relation.
The first group G1 to the P1 has no significant children and thus
Pl is coded as a zerotree root. The next parent P2 has two
significant children C1 and C2 in Gl, therefore, the children
groups are G1,G3 and G4. In this case, the parent P2 has eight
children except the second child of G2 among nine children. The
resulting stream is 7.S (at parent level) ZZSS (from G1) SS (from
(G3) S8 (from G4), seven S and three 7. symbols are included.
Note that we do not need to scan a child twice. The tlexible
relation enables to decrease one more Z symbol than the moditied
relation.



IV. EXPERIMENTAL RESULTS

Our flexible tree is designed to reduce the number of IZ
symbols and thus let the entropy lower. The decreased 1Z
svmbols induce some increase of ZTR symbols in numbers by
defining an extended relation. The ratio between the decrease
and increasc is etficiently exploited with the flexible treeing.
We use two standard images — [.enna and Barbara (512 X 512
with a grev scaled level) - from the RPI site,
ftp://ipl.rpi.edu/pub/image/still/usc. Our all results are based on

6-scaled octave wavelet transform and we use the 9/7 filter of

[5] and mirror extensions at boundaries. Experimentally, the
performances are compared with the published results at the
reference [1] and they are plotted in fig TV-1 (a) and (b) for the
two images respectively.  ‘The performances in PSNR are
caleulated over the ranges from 256 to 32768 Bwtes. Our
flexible coder shows 0.2~0.7 dB better performances than the
EZW coder. The improvements are based on the symbol
replacements by which we usc a frequent symbol (ZTR) instead
of intrequent symbol (I7.) as many as possible. We know the
replacements are well accomplished with the flexible relation as
shown in the performance curves.

In addition, we compare the number of symbols between the
EZW und our coder. To give an exact comparison, we stop to
code right after a threshold becomes 16; that is, the coding is
terminated when the dominant and subordinate passes are all
coded with respect to the threshold 32. The same condition is
applied to the Barbara image and the results are given in table
IV-1 (b). As we can see in the table, the numbers of POS and
NEG symbols are the same but the compressed sizes are
different. In the tlexible relation, some [Z symbols are
disappeared instead of some increase of ZTR symbols. As we
can see in the table [V-1, we get different symbol streams from

those two coders respectively. Comparing with the number of

produced symbols in the EZW, our coder produce 1575 less 17,
symbols and 4704 more ZTR symbols for the Barbara image.
Therefore, the ratio can be calculated by dividing the increase in
7ZTR by the decrease in IZ; 4704 / 1575 = 2.99. The value 2.99
means that one 17, svmbol was replaced with 2.99 ZTR symbols.
The decreased IZ svmbols play a part in lowering an entropy and
therefore the image can be compressed with a smaller size. We
can calculate each entropy for symbol distribution; 1.274
bits/sym. and 1.195 bits/sym. for the EZW and the proposed
coder respectively. By using the low entropy, we can compress
more compactly, though total number of symbols is increased.
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Figure [V-1. performance curves for the test images.

Table IV-1. Comparisons of produced symbols in numbers for the same
number of significant coetlicients.

Used |Compress | PSNR [Compress | # of # of #of |#oflZ
coder | edsize | (dB) | ionratio | POS | NEG | ZTR
(Bytes)

EZW 6511 32.51 140.26:1 | 3876 | 3743 ]43249 | 1566

Proposed| 6328 32.51 1 41.43:1| 3876 | 3743 | 46829 | 1369

(a) Lenna (512 X 512, & bits grev image, original size = 262144 Byvtes)

Used |Compress | PSNR |Compress | #of |#ofNEG| #=ot | #of
coder edsize | (dB) | ionratio | POS ZTR 17,
(Bytes)

EZW 15878 | 30.05 }16.51:1] 9741 9586 | 72003 } 7603

Proposed| 14584 | 30.05 |17.97:1 | 9741 9586 | 76707 | 6028

(b) Barbara (512 X 512, 8 bits grey image. original size = 262144 Bytes)
V. CONCLUSIONS

We described a new relation that a parent takes its children
with a flexible and selectable method. We extend the fixed
relation used in the 1:ZW scheme in order to decrease entropy per
symbol. The ways to lower the entropy are accomplished by using
more symbols that are frequent and less symbols that are
infrequent. The infrequent symbol is IZ in the EZW and we can
avoid the use of the symbol by extending the relation in parent-
child; a parent has nine children and some of them are shared with
neighboring parents. With the extended relation, the number of 17,
symbol is decreased.

We showed that a symbol stream is coded with less entropy
using the flexible relation in parent-child. Experimentally, our
flexible coder has 0.2 ~ 0.7 dB better performances than the
EZW's. We suppose that the flexible coder can be improved by a
more efficient relation in parent-child.
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