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ABSTRACT WC introduce a new zzrotree scheme that e&tively 
exploits the inter-scale self-similaritizs found in the octave decomposition hy 
a wavelet transform. :2 zerotreti is useful to code wavelet coefiicients and its 
4&tiveness wa.q proved hy Shapiro’s I:%W. In the coding scheme. wavzlz~ 

uoellicients are symholizsd and then entropy-coded. ~fhe entropy per 
symbol is determined from the produced symbols and the linal coded size is 

calculated hy multiplying the entropy and the total numher ol‘symhols. 

In this paper, we analyze symbols produced from the li%W and discuss 
the entropy per symbol. Since the entropy depends on the produced 
symbols, we mod@ the procedure of symbol generation. First, we extend 

the relation between a parent and children used in the EZW to raise the 

probability such that a significant parent has significant children. ‘I’he 
proposed relation is flexibly e.xtended according to the tict that a significant 
coolticisnt is likely to hay< significant coetficients in i& neighborhood. 

Our coding results arc compared with the puhlishcd rzsul& in paper 1 I I 
and improvcmsnts come‘ Tom the USL‘ ol’ lower tmtropy per symbol. WI: also 
giw the comparison ofthz number ol’produced symbols. 

KEYWORD: image compression, wavelet transform, zero- 
tree coding 

I. INTRODUCTION 

In the wavclct-based coding, dependencies among bands 
using rluadtrces wcrc exploited in E%W(llmbeddcd Zerotree 
Wavelct) . I” SI’II lT(Sct Partitioning In I Iierarchical Trces)121, 
SFQ( Space Frequency Quantization)“.“‘; that is; one coefficient 
at a given band is related with four coefficients at the same 
spatial location at the next finer band in terms of a relation 
between parent and children and the relation is applied for all 
coefficients except for DC coefficients. The EZW coder was 
designed by Shapiro who first applied an embedded zerotree 
using a wavolct. The algorithm is based on three concepts; I) 
prediction ol‘ the absence of signi ticant coefficients across scales 
by exploiting the sclc-similarity inherent in images 2) successive 
approsimution for decoded coefficients 3) adaptive arithmetic 
coding for the streamed out symbols. Atter that, Said and 
Pcarlman published their great \\ork - SPII IT - that gives nice 
performances and fast processing. They use three lists to lind 
signiticant coetlicients in bands: 1) an LIP for insignilicant 
coetticients 2) an LSP for significant coelticients 3) iin LIS li)r 
insignificant descendants. The LIS includes two kinds 01 
information for the descendants at the forms of type A or type 13. 
The three lists are identically duplicated in a decoder by the 
transmitted bit stream. In the EZW and SPIHT algorithms; their 
merit is on the termination ability at any point that an 
encoder/decoder wants to stop, and the decoder reconstructs ~1 
approximated image iiom the inl‘ormation he has received. This 
property is clearly desirable when n-e consider of our 
constrained communication channels. More recently, %.Xiong 
et. al. published an SFQ algorithm that surpasses the EZW and 
SPII-IT in performance and there are two versions according to 

wavelet decompositions. One of them uses the octave band 
wavelet and the other uses the wavelet-packet. They get a coding 
performance while pruning branches from trees in a rate-distortion 
sense and scalar-quantizing the cocllicients at the survived nodes. 
The decision to prune a branch or not depends on the pre-assigned 
bit budget and comparing ol‘ costs between pruning and non- 
pruning. 

Most of coding schemes have two common procedures; 1) 
symbol generation (model transformation) and 2) entropy coding 
of the symbol stream. The symbol stream is produced for the 
purpose of representation and then symbols are entropy-coded. In 
this paper, we introduce a new zerotree scheme that lcad lower 
entropy and thus more compression. Since the entropy per symbol 
is determined by the probabilities of produced symbols; we thus 
modi& the procedure of the symbol generation with IlcGhle 
treeing. The tree is flexibly designed in view of entropy. In the 
I:%W scheme, a node on a tree branches out into li)ur nodes and 
this relation is recurred to as a fixed relation in the sense that the 
relation is not changed. On the other hand: our proposed relation 
is referred to as a “flexible tree” in the sense that a node on 21 tree 
branches into basic four nodes and llcxibly extends its brunches to 
nodes in neighbor. The idea to the tlexible tree comes tiom ho\\ 
to extend more branches. 

II. ZEROTREE BASED COMPRESSION 

1. Embedded Zerotree Wavelet coding 

Jerome M. Shapiro [ I] devclopcd an algorithm that exploits a 
relation betueen subbands in image compression. In the 

algorithm, zerotrees have been combined with bit plane coding 
and demonstrate the etYectiveness of wavelet based coding. The 
algorithm is based on the zerotrees that efficiently reprcscnt many 
insignificant coefficients. As wavclet coeflicients are located 
having some dependencies in bands; the dependencies are well 
exploited with a quadtree structure. The compression has three 
step procedures: 1) wavelrt decomposition 2) symbol goncration 
-1) entropy coding. We brietly review the coding algorithm and 
discuss produced symbols and its entropv. To dcscrihc the 
compression scheme, we quote several delinitions - like parent, 
child, ancestor, descendant, root etc. - from the rcfercnce [ 1 I. 

‘l‘hcrc arc two types of passes performed: I) a dominant pass 
2) and a subordinate pass. The dominant pass finds significant 
cocllicicnts to a given threshold, and the subordinate pass rclincs 
all significant coefficients found in all previous dominant passes. 
We use four symbols to tell a dominant pass to a decoder. A %Tl< 
symbol is used for a zerotrer root that is insignificant and has no 
slgniticant descendants. One more needed symbol is an Isolated 
%cro symbol (named 1%) used when a coet%ient is insignificant 
but has some significant descendants. Besides the symbols; two 
symbols are used for a significant coeflicient - I’OS and MiG 



according to its sign. After all: the use ot‘ %‘I‘li and lZ symbols 
15 to inform locations of signilicant coefficients (POS and NEG) 
as etticientl!; as possible. 

After a dominant pass, a subordinate pass is performed in 
order to refine the coellicients found to be significant in the 
previous dominant passes and these two passes are entropy- 
coded with an adaptive arithmetic coderI’l. 

2. The Shannon’s entropy 

As we reviewed in the previous section; a symbol stream is 
produced from the alternate passes and then the stream is 
entropy-coded for more compression. In this sub section, we 
brie& study the Shannon’s entropy theorem to analyze the 
symbol stream. 

Lets = /s,. .s2. , .s,,) be a set ofn symbols. Given D = { 
d,, C/Z, .d,j, a data set of 1 symbols in a sequence (the number 1 

is also called the data length of D): the probability distribution 
ot‘ the symbol set S in the data /I is the collection of positive 

numbers I-’ -= {p,, ~2, ..,,, p,,], one for each symbol, defined by 

p, = !{dk CL);dk=.s,) jl. fiWi=1,2:“.n. (1, 
If the probability distribution is the only assumed redundancy 
infbrmation, the pair 6.P) is called a zero-order Markov source. 
The data sequence D is called a zero-order Markov sequence. 

IJsing the above notations; the (zero-order) entropy of the 
data sequence D is detined to be 

3. A relatiun between the numher of symbols and its entrap! 

With the Shannon‘s entropy, we consider a relation 
betwxxn the number of symbols and its entropy. The entrap) 
per symbol largely depends upon occurrence probabilities ot 
symbol alphabets and thus the final coded size is calculated b! 
multiplying the average entropy and the number of symbols. 
Therefore; we can achieve more reduction in linal coded size 
with two ways; one is to reduce the entropy per symbol and the 
other is to reduce the number of symbols. 

We assume two particular source models for this 
discussion Both models are composed of two s!/mbols (Sl and 
S:) but the probabilit\: distributions d the numbers of symbols 
are different. Assume the first model has ten SI and ten S;. III 

this case, the probabilities ot‘ symbols and its entrap! are 
calculated by using equations I and 2. The model is assumed to 
be uniformly distributed and the entropy is I bit/symbol. 
Therefore; we should use 20 bits for the model. On the other 
hand, we assume the second model that has five SI symbols and 

20-bit budget. In this case of the model, we consider how many 
S; symbols we can insert in the 20 bits. 1Jsing the equations 1 
and 2; we can insert, at least; 20 Sz symbols into the source. 
Therefore, the final output sizes are the same at 20 bits though 
they have different source length of symbols. It is important to 
compare the ditference between the two distributions; in the 
second model, live SI has a worth of ten Sz if we consider only 
the munber of symbols. If the replacement is accomplished 
without any deformation of the contents; our attention will go to 
the number of symbol to be replaced. when we accomplish the 
replacement in smaller number than two, we do expect more 

compression with less entropy although the total number 01‘ 
symbols are increased. ‘l‘his consideration is discussed in the nc?;t 

section with more detailed exa~nple and we aill apply to the lY,W 
by using our tlexible tree structure. 

111. AFLEXIBLERELATIONINPABENT-CHILD 

1 j 1 1 

As reviewed in the previous section, a dominant pass in the 
EZW tells where significant coetlicients kvith respect to a given 
threshold exist and which signs they have. In the pass: we use 
four symbols - ZTli, POS. NEG and I% - to inform the locations 
and &IS. Once an image is decomposed using a wavelet, the 
number of signilicant coetticicnts is decided. Therefore, it is the 
number of ZTR and IZ to decide length of a symbol stream and its 
entropy. WC now consider the occurrence of these symbols. 
While a ZTR is produced when a coefficient and its descendants 
are insignilicant, an 17, is produced when a coefficient is 
insignificant but some of descendants are signiiicant. 

Assumed that the numbers of POS and NIX arc lixcd as ten 
respectively, table Ill-l shows relations in number between LI‘R 



and 1% for a targeted budget (80 bits) in the views of numerical 
and graphical charts. As we can see in the table, when the 
numbers of I% are decreased at a rate of one symbol, see how 
manv %TR cm be coded into a stream. For a clear comparison, 
we give our attention to only the cases 1 and 10. In the case 1 i 
the number of IZ arc ten and therefore ten ZTR can be coded for 
the target size (X0 bits). On the other hand, there is only I IZ 
and thus 38 ZTR can be coded for the same targot size 111 the 
case IO. Although their target sizes are the same, we can code 
the diKerent number of symbols. Comparing with the case I, 
the case IO can be interpreted as the decreased nine Ii’. symbols 
arc replaced with the increased 28 ZTR symbols. The ratio 2X / 
9 means that one IZ has the worth of 3.1 ZTR symbols. 
Therefore, we conclude a fact that it is more effective for an 
entropy coding to use three ZTR rather than one IL if’ and only 
if possible. Our interests are then on a possibility to such a 
symbol replacement and a ratio in the replacement. 

To implement the symbol replacement, we have two step 
procedures: one is to decrease the number of IZ symbols and the 
other is to replace them with several ZTR symbols in order to 
compensate the decrease. We first suggest a solution to 
decrease I% symbols. An insignificant coefficient is coded as an 
1% when some descendants are significant. In other words, the 
occurrence of 12 is caused rrom one reason that the significant 
descendants belong to the insignificant ancestor. Therefore; a 
simple solution is to suppress the occurrence: let the significant 
descendants belong to a significant ancestor. It is only possible 
that the descendants have a power to select their ancestors. In 
the IXW, the relation does not allow such a selection and 
al\rays maintains one parent to four children; this is referred as 
a fixed relation. The relation can be modified with another form 
so that some children can select their parent. Selecting a parent 
means that there should be several candidates for the parent and 
we can imagine that a modified relation must have an 
overlapped form. It can be made in various Ibrms. One of them 
is suggested in figure III-1 (a). Four parents are displayed in the 
parent level having their own shapes. These shapes help to 
understand the relations between parents and their children. 
Each parent has nine children respectively and some children 
are shared by several candidates to be their parent; that is. a 
child can belong to one or more parents. In other words, we can 
scan a child alter a parent among all candidates. This is referred 
as a modified relation; one parent-nine children. 

We give a simple example to explain the modified relation. 
Assume that there are two parents at parent level - one is 
significant and the other is insignificant - and six signiticant 
children (named as Cl to C6) in child level as sho\4n in the 
figure III-1 (b) and (c). Our goal is to find all signilicant 
coefficients according to the scamlinp order that we do not scan 
any children before any parents. We will use two relations to 

find them; the fixed and the modified relations. We have seven 
coefficients - one parent and six children - to be found as 
significant coefficients. We first find them with the fixed 
relation as shown in figure III-1 (b). The significant parent P2 
has [our significant children and they are scanned under P2. 
Ilo~~evcr: the insignilicant parent I’1 has also t&o signiticant 
children: thus the parent should be symbolized with an I% 
symbol to tind these t\vo signilicant children. Therefore: ~1 c 

make a symbol stream in this cast - IS (at parent level) SZS%. 
SSSS (at child level); where S,I,% mean a significant coefficient, 
an isolated zero and a zerotree root respectively. The stream has 
seven S, three Z and one I symbols. On the other hand, when the 
modified relation is applied to the example as shown in ligure ltl- 
I (c), all signilicant children belong to one signiticant parent and 
thus we need no IZ symbol. In this case, the symbol stream is 
output as ZS (at parent level) ZZZSSSSSS (at child level): seven 
S and four Z symbols. As was sho\vm in the above explanationl 
two symbol streams were obtained for the same example by using 
two dIKerent relations. WC knew that a relation between a parent 
and its children plays an important role in producing a symbol 
stream. According to specilic relations: the kind and the number 
of produced symbols are different and thus the resulting entropy is 
diKerent. In the cases of (b) and (c), entropies are 1.157 
bit/symbol and 0.046 bit/symbol respectively. Their entropy 
coded sizes are 11.57 bits and 10.41 bits. Comparing those two 
streams, we conclude that one I symbol in the case (b) was 
replaced with two Z symbols in the case (c). After all. when we 
change a relation with another, an important thing is how many Z 
symbols are increased instead of decreasing I symbols. The ratio 
between the increase and decrease will be an important [actor tbr 
an cntropp coding. 

To decrease the ratio, we again change the modilicd I-9 
relation with a tlexible relation. In the previous example. the l-9 
relation was more clficient than the tised relation as no use of I 
symbols. 1 iowever, that is on& the special example to cxphiin 21 
relation between I and % symbols in numbers. If the 1’1 wet-c also 
significant in the example, the symbol stream of the case (b) 
would not have included any I symbol and thus only two % 
symbols are needed for the case. This means that the modiiicd 
relation is not always better than the lixed relation is. Therelbre, 
we IPXI a general relation to compromise those two relations. 

We exploit the dependencies in neighboring coefficients for 
that purpose. This can be realized by using a llexible relation: 
that is; the number of children a parent has is variable at a bound 
between tbur and nine. To define the flexible relation: we divide 
nine children into four groups that are named as G I ,G2,G3 and 
G4 as shown in figure III-1 (d). A parent has the first group Gl 
and selectively has the rest groups of G2,G3 and G4; where each 
ol‘rest groups - G2 ;CJ~ and G4 - is selected only when the first 
child in each group is signiticant. For example, Ci2 is selected 
when C2 is significant; in this case; the parent has Gl and G2 
groups and six children C I to C6 belong to the parent. Therefore; 
the Gl should be scanned before G2,G3 and G4. After all, 
selections of the rest groups G2;G3,Cr4 are determined by the 
signiticance ol‘the children C2,C4.C5 in Gl. 

Back to the previous cxamplc; we apply the Hexible relation. 
The tirst group Gl to the Pl has no signilicant children and thus 
1’1 is coded as a zerotrce root. The next parent P2 has two 
significant children Cl and C2 in Gl; therefore, the children 
groups are Gl,G3 and G4. In this case, the parent P2 has eight 
children except the second child of G2 among nine children. The 
resulting stream is ZS (at parent Icvel) ZZSS (from Gl) SS (from 
G3j SS (from G4); seven S and three 7. symbols arc included. 
Note that we do not need to scan a child twice. The tlexihle 
relation enablss to decrease one more % symbol than the modified 
relation. 



IV. EXPERTMENTAL RESULTS Table IV-I. Comparisons of produced svmhols in numhers Ibr the same 

Our tlexiblc tree is designed to reduce the number of IZ 
symbols and thus let the entropy lower. The decreased LZ 
symbols induce some increase ol.‘%TR symbols in numbers by 
defining an extended relation. The ratio between the decrease 
and incrrax is zfficientl\; exploited Lvith the tlexible treeing. 
WC use two standard im&es - I,enna and 13arbara (5 I2 X 5 I2 
with a prey scaled level) - from the RPI site; 
Ftp://ipl.rpi.edu/pub/image/still/usc. Our all results are based on 
h-scaled octave wavelet transform and we use the 9/7 filter 01 
[5] and mirror extensions at boundaries. Experimentally, the 
performances are compared with the published results at the 
rclrence [ 11 and they are plotted in fig IV-1 (a) and (b) Ibr the 
two images respectively. The performances in PSNR are 
calculated over the rangrs from 256 to 3276X Hvtrs. Our 

tlexible coder shows 0.2-CJ.7 dB better pcrtbrmanccs than the 
EZW coder. The improvements are based on the symbol 
replacements by which we USC a frequent symbol (ZTR) instead 
of infrequent symbol (17,) as many as possible. We know the 
replacements are well accomplished with the tlexible relation as 
shown in the performance curves. 

In addition, we compare the number of symbols between the 
EZW and our coder. To give an exact comparison; we stop to 
code right alter a threshold becomes 16: that is, the coding is 
terminated when the dominant and subordinate passes are all 
coded with respect to tht: threshold 32. The same condition is 
applied to the 13arbara image and the results are given in table 
IV- I (bj. As we can see in the table, the numbers of POS and 
NEG symbols are the same but the compressed sizes are 
different. In the tlexible relation, some IZ symbols are 
disappeared instead of some incressc of ZTR symbols. As WC 
can see in the table IV-I, we get different symbol streams from 
those two coders respectively. Comparing with the number ol 
produced symbols in the E%W, our coder produce 1575 less I7. 
symbols and 4704 more ZTR symbols I‘or the Barbara image. 
Therefore, the ratio can be calculated by dividing the increase in 
%TR by the decrease in IZ; 4704 / 1575 = 2.99. The value 2.99 
means that one 1% symbol was replaced with 2.99 ZTR symbols. 
The decreased LZ symbols play a part in lowering an entropy and 
therefore the image can be compressed with a smaller size, We 
can calculate each entropy for symbol distribution; 1.274 
bits&m. and I. I95 bits&n. for the EZW and the proposed 
coder respectively. By using the low entropy, we can compress 
more compactlv,tough total number $IsfI!.y is increased. 
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(a) Lenna (h) Barhara 

Figure I \:- I. performance curves for the lest images. 

numher of significant coetlicients. 

IJsed Compress PSKR Compress # of :i OfIZ 

coder ed size (W ion ratio POS 

(Bytes) 

EZW 6511 32.51 40.26 : I 3X76 3743 43249 1566 

Proposed 632X 32.51 41.43 : 1 3876 3743 46X29 1369 

(a) Lxnna (5 12 X 5 12, X hiLs grew image. original size = 262 144 Bvtes) 

1 l!sed IComoress 1 I’S?%R IComnrcss 1 :I ot 

1 codor 1 ed $ize 1 (dB) 1 ion ;atio 1 POS 1 

= ofixl:G t ot 1 :J ()I’ 

1 ZTR 1 1% 1 

(Bytes) 

EZW 15878 30.05 16.51 : 1 9741 95X6 72003 7603 

Proposed 14584 30.05 17.97 : 1 9741 95X6 76707 602X 

(h) Barhara (5 12 X 5 12, 8 hits grcy image. original six = 262 144 13yv~) 

V. CONCLUSIONS 

We described a new relation that a parent takes its children 
with a llexible and srlectablc method. We extend the fixed 
relation used in the IY,W scheme in order to decrcasc: entropy per 
symbol. The ways to lower the entropy are accomplished bv using 
more symbols that are frequent and less symbols that are 
infrequent. The infrequent symbol is LZ in the EZW and wc can 

avoid the use of the symbol b!; extending the relation in parcnt- 
child; a parent has nine children and some of them are shared with 
neighboring parents. With the extended relation, the number of 1% 
symbol is decreased. 

We showed that a symbol stream is coded \\ith less entrap! 
using the llexible relation in parent-child. Experimentally, our 
flexible coder hats 0.2 - 0.7 d13 better performances than the 
UW’s. We suppose that the tlexible coder can be improved b!, a 
more efficient relation in parent-child 
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