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ABSTRACT 

We extend the approximate transfer function calculus of 
“undersnreadll linear time-varvine fLTV1 svstems intro- 
duced by W. Kozek. Our extensiog is‘ based o”n a new, gen- 
eralized definition of underspread LTV svstems that does 
not assume finite support of the systems”’ spreading func- 
tion. We establish explicit bounds on various error quan- 
tities associated with the transfer function approximation. 
Our results yield a simple and convenient transfer function 
calculus for a significantly wider and practically more rele- 
vant class of LTV systems than that previously considered. 

1 INTRODUCTION 

Background. Linear time-varying (LTV) systems model a 
variety of phenomena as diverse as speech production and 
mobile radio channels. The input-output relation for an 
LTV system (linear operator [l]) H is given by’ 

Wx)(t) = J qt, t’) x(t’) cft’, (1) t’ 
where h(t, t’) is the impulse response (kernel) of H. 

Unfortunately, general LTV systems are much more diffi- 
cult to analyze and characterize than linear time-invariant 
(LTI) systems, i.e., systems with convolution-type impulse 
response of the form h(t, t’) = g(t - t’). For an LTI sys- 
tem, the transfer function (frequency response) G(f) = 
s, g(r) e-jzXfrdr is an extremely simple and efficient sys- 
tem description. This is due to the following properties: 

l The complex sinusoids {ejz*lt} are the eigenfunctions of 
any LTI system, with G(f) the associated eigenvalue. 
Thus, the response of an LTI system to a complex si- 
nusoid ejzrfot equals ejzrfot multiplied by G(fc). 

l The Fourier transform of (Hz)(t) equals the Fourier 
transform of x(t) multiplied by G(f). 

l The transfer function of the series connection (composi- 
tion) of two LTI systems Hi and Hz equals Gi (f) Gz(f). 

l The transfer function of the adjoint of an LTI system 
equals the complex conjugate of G(f). 

l The minimum and maximum system gain are reflected by 
the infimum and supremum, respectively, of ]G(f)]. 

A similarly simple characterization exists for “linear fre- 
quency-invariant” (LFI) systems which have an impulse re- 
sponse of the type h(t, t’) = m(t) h(t - t’). Here, the factor 
m(t) plays the role of a “temporal transfer function.” 

In contrast to LTI or LFI systems, general LTV systems 
do not allow a simple and efficient description via a uni- 
versal “transfer function” with properties similar to those 
listed above. 
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Outline of paper. This paper shows that the eneral- 
ized Weyl symbol (GWS) introduced by IV. Kozek 2] is an 9 
approximate transfer function for a practically important 
class of LTV systems. The GWS of an LTV system H is a 
(generally complex-valued) function of time t and frequency 
f defined as 

Lg)(t, f) A [ hCa’)(i!,r) e-j2”frdr, (2) 

where 

P)(t,7) = h(t + (++, t - (f+a)r) (3) 

with Q a real-valued parameter. For (Y = 0, l/2, and -1 2? 
the GWS reduces to respectively the We 
Zadeh’s time-varying transfer function T 

1 symbol [2]- 61: t 
[7 , and the Kohn- 

Nirenberg symbol [6, 81 (equivalently Bello’s frequency- 
dependent modulation function 91). For LTI and LFI sys- 
tems, the GWS simplifies to t I e spectral and temporal 
transfer function, respectivelv. 

Our results extend the p”ioneering work of W. Kozek 
who developed a GWS-based approximate transfer function 
calculus for a class of “underspread:’ LTV systems whose 
spreading function (see Section 2) has compact support of 
area < 1 [lo, 111. In Section 2 of this paper, we shall extend 
the concept of underspread systems using weighted integrals 
and moments of the spreading function. Subsequently, in 
Section 3 we will employ these integrals/moments to formu- 
late explicit bounds on the errors incurred by the transfer 
function approximation, thereby extending the GWS-based 
transfer function calculus to a significantly wider and prac- 
tically more relevant class of LTV systems than that con- 
sidered in [lo, 111. We note that a different approach to 
related topics is taken in the theory of pseudo-differential 
operators [6, 8, 121. 

2 EXTENDED CONCEPT OF 
UNDERSPREAD SYSTEMS 

In contrast to LTI or LFI systems (which cause only time 
or frequency shifts, respectively), general LTV systems shift 
the input signal with respect to both time and frequency. 
Indeed, the output signal in (1) can be written as [2, 6, 9, 
10, 131 

(Hz)(t) = JJ Sk+, v) x?,!(t) drdv. T ” 
Here, x?;(t) = x(t - 7)ej2nvtej2x(a-1’2)rv is the signal 
z(t) shifted by r in time and by v in frequency, with the 
parameter 01 E lR expressing a freedom in defining joint 

time-frequency (TF) shifts, and Sg’(r, v) is the genera&d 
spreading function (GSF) of H, defined as 12, 6, 9, 10, 131 



with h’“!(t: T) as in (3). The GSF is the 2-D Fourier trans- 

form of the GWS in (2). It can be shown that S~‘)(T, v) = 

Hence, we will write ~S’H(T, v)I ihstead of lsg’(7,v)I. 
Conceptually, an LTV system is underspread if its GSF is 

concentrated in a small region about the origin of the (7, v)- 
plane, which indicates that the system introduces only small 
TF shifts 7, v. In [lo, 111, the GSF of an underspread sys- 
tem was required to be exactly zero outside a small support 
region about the origin. In practice, however, this condition 
is often not satisfied exactly but only efectively. This poses 
the problem of how to choose the effective support region 
and how the resulting modeling error affects the validity of 
the results based on the finite support model. 

To circumvent these problems, we here propose to char- 
acterize an underspread system by means of the following 
(a-independent) normalized’ weighted GSF integrals: 

mg’ a - 
IIAl r ” JJ 4(T, u) ISH(Tr v)I d7dv 

&Jg’ a - - 
ll~ll, ?- Y [II I 

l/2 
4’(T,Y) ISH(r,V)12dh 

Here: d(r, v) with $J(T, v) 2 4(0,0) = 0 is a weighting func- 
tion which penalizes GSF contributions that ue far away 
from the origin. Fig. 1 shows some weighting functions to 
be used in Section 3. We also define the GSF moments 
mJIks') and j,,JL," (k 1 E No) as special cases of rn(‘) and 

iIJ$” using the weighting functions $(r, v) = 1~1~ 1~7. Mo- 
ments with Ic = 0 or 1 = 0 penalize mainly GSF contribu- 
tions located away from the 7 axis or away from the v axis, 
respectively, whereas moments with k = 1 penalize mainly 
GSF contributions located away from the T and v axes, i.e., 
lying in oblique directions in the (7, u)-plane (cf. Fig. 1). 

The GSF integrals and moments measure the spread of 
ISH(~, v)I about the origin of the (7, v)-plane. Hence, with- 
out being forced to assume that the GSF has finite support, 

we can consider a system H to be underspread if rng) and 

M$‘),are “small.” (Note that this concept is much less re- 
strictive than the concept of “slow time-variation” which 
requires ~S’H(T,V)( to be narrow with respect to v.) Since 
the GSF and the GWS are a 2-D Fourier transform pair, 
the GWS of an underspread system is a smooth function. 

3 TRANSFER FUNCTION CALCULUS 

In this section, we show that for systems that are un- 
derspread in the extended sense of Section 2, the GWS 

Lg’(t: f) defined in (2) is an approximate “TF transfer 
function” that generalizes the spectral (temporal) transfer 
function of LTI (LFI) systems. More specifically, we estab- 
lish explicit upper bounds on the errors associated with the 
transfer function approximation. These bounds are partly 
similar to bounds derived in [lo, 111, but they use the GSF 
integrals/moments defined in Section 2 and do not assume 
the GSF to have finite support. Hence, our subsequent re- 
sults show that a GWS-based transfer function calculus is 
valid for a significantly wider class of underspread systems 
than that considered in [lo, 111. 

3.1 Approximate Uniqueness of the GWS 

Whereas the transfer functions of LTI and LFI systems arc 
uniquely defined, the GWS of an LTV system depends on 

2The weighted integrals are normalized by the 151 and I,2 

norm of $‘(7,v), IIsHtil’~7 J, ISH(T,v)ld7dv and Il&.IIi= 

j-r s, hi(T,u)12d7dy = St, St, Iff(h,tz)12dhdt2 = IIHII;. 

(4 (b) (4 (4 
Fig. 1. Gray-scale plots of some weighting functions: (a) 

d~,v) = Hk, 0) d(~tu) = blk, Cc) b(r, v) = Id, (d) 

c$(T, II) = 11 - Ai’)(r, v)I with Ai’)(r, v) the ambiguity func- 
tion of a normalized Gaussian function (cf. Subsection 3.4). 
We note that darker shades correspond to larger values. 

the parameter cr. However, this dependence is bounded 
according to the following theorem.3 

Theorem 3.1 For any LTV system H, the difference 

nl(t, f) = Lk’)(t, f) - Lg”(t, f) between two GWSs with 
parameters CYI and (~2 is bounded as4 

For an underspread system whose moments rng”’ and 

M(“‘) will be small these bounds show that the GWS is 
ap$oximately indepkndent of (Y, i.e., 

Lgqt, f) M Lp(t, f). 

Hence, the TF transfer function of an underspread system is 

approximately unique. We note that small rng”) or Mi.” 
requires the GSF to be concentrated along the T and v axes 
(i.e., not oriented in oblique directions). 

3.2 Adjoint Systems 

The transfer function of the adjoint [l] of an LTI system 
is G*(f), and similarly for an LFI system. In contrast, the 

GWS of the adjoint H+ of an LTV system H is Lgi (t, f) = 
L(-“)*(t, f), which does not equal L(“)* 
H” 

t (t, f) unless cr=O. 
owever, Theorem 3.1 leads to the fo owing bounds. 

Corollary 3.2 For any LTV system H, the diflerence 

A,(t, f) = Lki(t, f) - L$)*(t, f) is bounded as 

lA2(4 f)l 2 4xlalm~“‘t llA2112 

IlsHlll lMl2 
5 4~1~1 1%Jg’? 

For an underspread system, these bounds show that 

L(‘I) (t f) z L(=)* 
H+ ’ H (hf) 

Unlike in the LTI or LFI case, the GWS of a self-adioint 
- I 

(Hermitian) system (i.e., a system satisfying H+=H) is not 
real-valued for (Y f 0. Corollarv 3.2 imnlies that the imx- 
inary p,art of the’GWS of a self-adjoiit system, Z(t, f) “= 

3The proof of this theorem is outlined in the Appendix. The 
proofs of subsequent theorems are partly similar; they can be 
found in [14] and will here be suppressed due to space limita- 
tions. For all bounds, the respective GSF integrals/moments are 
sssymed to exist. 

Here, llAll12 denotes the L2 norm of hl(t, f) defined as 

Il~Illji = St s, \Al(t,j)I” dtdf. We shall consider bounds on 

the normalized error magnitude and L2 norm. The magnitude 

is normalized by llS~\l~ since IL$‘(t,f)l 5 ll.S’~l]~, and the .Lz 

norm is normalized by llHl12 since IILk)j12 = ljHl12. 



$ [L$‘@, j) - Lk)‘(t: f)] = 5 [L$ (t, j) - Lp(t, j)] = 
$Az(t, f), is bounded as 

Iz(t, f)l 5 2i+YI rr$“), m 

IlSHll, 
< 2744 !yy) 

IlHllz - 
Hence, the GWS of an underspread, self-adjoint system is 
approximately real-valued even if (Y # 0. 

3.3 Composition of Systems 

The transfer function of the series connection (composition) 
of two LTI systems HI and Hz equals the product of the in- 
dividual transfer functions, Gi (f) Gz (f), and similarly for 
LFI systems. In contrast, the GWS of the composition 
HzHl of two general LTV systems is not equal to the prod- 
uct of the individual GWSs of HI and Hz. 

Theorem 3.3 For any two LTV systems HI, Hz, the error 

b(t, f) = Lj&l ct, f) - Lg:(t,f)Lgj(t,f) is bounded as 

(4) 1wtr f)l 
b% II,IISHali, 

with 

B6-d 2 
HI .Hz 

The theorem shows that if HI and Hz are such that 
(O,l) (1.0) 

*HI *Hg 
and m(1’o) (Osl) 

HI niHZ are both small, we have 

Lr-Iq’H,(t’ f) HI 1 z L(O’)(t f)LS19’(t f) , ’ 

Small m(“‘l)m(l’o) and mk;‘)rn&‘) requires that the GSFs Hl H2 
of HI and Hz are both concentrated about the origin of 
the (7, v)-plane, with similar orientation parallel to the r 
or v axis. That is, l&i (r,~)] and ]SH~(~,Y)] may not 
be oriented in oblique directions or in significantly differ- 
ent directions. For cr = 0, the bound in (4) simplifies 

since Bzi,Hz = 3 (rn&‘)rnkf) + rn~f’rn~;“). It can here 

be shown that (4) remains valid if Bgi,H2 is replaced by 
B(o) - - with HI = UHlU+ and & = UHzU+, where 

UH/s’%y unitary operator corresponding to a rotation or 
some other symplectic coordinate transform of the (r,~)- 
plane 61. Thus, for a = 0, 4s(t, f) may be small even if 
the G & Fs of HI and Hz are oriented in (similar) oblique 

directions. For (Y = l/2, we obtain BE/yA2 = rn&l)rn&o), 

which may be small even if ]SH~ (7, v)] is located along the 
7 axis and ]SH~ (r, u)] is located along the v axis. Similarly, 

for cr = -l/2 we have BLI$i = rn~~)m&‘), which may 

be small even if ]SH, (r, v)] is located along the v axis and 
]Sr.rz (7: v)] is located along the r axis. 

Of particular importance (cf. Sections 3.4 and 3.6) is the 
composition of H with H+, i.e., HI = H and Hz = H+. 

Using IlsH+ II1 = IISHII~ and mH+ (kJ) = rng”) in Theorem 3.3, 
and combining with Corollary 3.2, it. can be shown that the 

difference 4a(t, f) = L$,(t, f) - IL$‘(t, f)]’ is bounded 

as (the same bound holds for HH+) 

with cn = ]o + l/2] + ]a - l/2]. Hence, for an underspread 
system we have 

L$,(t, f) = IJmt, f)12. 

The bound Cg’ is tightest for Q = 0, in which case Cg) = 

2~m~‘1)m~‘o). For ICY] < l/2, cp = 1 and thus Cg) = 

27r(m~‘0)m~“) + 2]cy] rng’l)) < 2~(m~‘“)m~“) + mg”)) 

3.4 Approximate Eigenvalues and Eigenfunctions 

The response of an LTI system to ejzZfot (signal with per- 

fect frequency concentration) is G(fs) ej2aJ0t, and the re- 
sponse of an LFI system to 6 t - to 

t 1 
(signal with perfect 

time concentration) is m(to) 6 t - to WC now ask if the 
response of an LTV system to an input signal sto,/,,(t) = 
s(t-to) e J2nf0t that is well concentrated about the TF point 

(to, fo) is approximately Lg)(to, fo) sto,fo (t), i.e., if sto:jo (t) 
is an “approximate eigenfunction” of H with Lk)(to, f(l) the 
associated “approximate eigenvalue.” 

Theorem 3.4 For any LTV system H, any TF point 
(to,fo), and any normalized signal s(t) (i.e., ~~s~~2 = l), 

the diference as(t) = (H Sto,fo (t) - @(to. jo) sto,fo(t) ) 
is bounded as 

II4511 Cg) +2m;‘) 2 < ok’, & 

IlsHll, - ’ 
+ n&), , (‘3) 

with the weighting function 4s (T, u) = 11 - A?) (r, v) ( where 

Ar)(~,v) = Jts(t+ (3-cr)~)s*(t- (f+a)r) e-jzZYtdt 
is the generalized ambiguitg function [15] of s(t), and where 

C’“’ has been defined in (5). H 

Hence, for an underspread system H where D$,L can be 
made small, we have the “approximate eigenvalue relation” 

( Hst,,fo)(t) 2. @(to fo) St0 Jo(t) , , , 

which implies that the GWS Lg)(t, j) can be interpreted as 
an approximate eigenvalue distribution over the TF plane. 

In particular, small rng” and rn$,k requires that, on the 

effective supports of I&(7, v)I and of ISH+H(r, Y)I, there is 

&(r,v) z 0 and thus A!“)(7 u) M A!Q)(O 0) G 1. The lat- 
ter condition can be satisfied’only if these’effective support 
regions are small, i.e., if H is underspread. We note that 

the bound Ok,: is tightest for cy = 0. 

3.5 Input-Output Relation 

For LTI systems, the Fourier transform of (Hz)(t) equals 
the Fourier transform of x(t) multiplied by the transfer 
function G(f). Similarly, for LFI systems (Hz)(t) equals 
m(t) z(t). In the case of LTV systems, one may desire a sim- 
ilar “input-output relation” sbating that a suitably defined 
TF representation of (Hz)(t) equals the TF representation 

of x(t) multiplied by the TF transfer function L&)(t, f). In 
the followingZ we use as TF representation the short-time 
Fourier transform (STFT) [16] defined as 

STFT(“)(t f) = 2 ? 
J 

x(t’) w*(t’ - t) e-J27ft’dt’! 
t’ 

where w(t) is a normalized window function. 

Theorem 3.5 For any LTV system H, the difference 

4e(t, f) = STFTgJ(t, j)-Lg)(t, f) STFTi’“.“‘(t, f) with ar- 
bitrary normalized STFT window w(t) is bounded as 

14,(t?f)l < Dg;w, lP6112 

IlsHll~ 11412 - IPll2 11~112 
5 fi ,qy : 



with the weighting function &,(r, v) = 
J 

I- Re{.4k)(r, v)} 

and DgviC as defined in (6). 

Hence, if DE,‘, and Mg‘“) can be made small by suit- 

able choice of w(t), we obtain the approximate input-output 
relation 

STFTg;(t, f) M Lg)(t, f) STFT’“‘(t f) z 1. 

Small Mg’“’ requires that Re{Ap)(r, v)} % A$)(O, 0) G 1 
on the effective support of ISr-r(r,~)l, thus implying that 
this effective support is small, i.e.: that H is underspread. 

3.6 Minimum and Maximum Gain 

The minimum and maximum system gain are defined as 

For LTI and LFI systems, 7~ and FH equal the infimum and 
supremum, respectively, of the magnitude of the transfer 
function. The squared magnitude of the transfer function 
of H in turn equals the transfer function of HfH. For 
general LTV systems, on the other hand, -n-r and IH are 

not related to Lgi,(t, j). In the following, we restrict to 

(Y = 0 since LEl,,(t, f) . is real-valued, and we consider 

Linf 
H+H L”,“f, fi sup L$,(t, f) . 

t*s 

Theorem 3.6 For any LTV system H, the difference 

between the infimum/supremum of LE!,(t, j) and the 
squared minimum/maximum system gain is bounded as 

IL%H - *(A( I ,(&) 

lb-d: 
HfH ’ 

IL;:, - raj i ,($,) 

IlsHll: 
H+H ’ 

with the weighting junction &(r, v) = 11 - AtO,:r v) I, where 

s(t) is an arbitrary normalized junction. 

Hence, if m$‘H can be made small by suitable choice of 

the function s(t), we have 

L inf 
H+H +!I, L;!, zrr:,. 

Small mEJ’H requires that AL’)(r,v) M A!“(O, 0) = 1 on 

the effective support of ISH+H(rr~)I, thus implying that 
the effective support of ISH+H(~,V)I is small, i.e., that H 

is underspread. In that case, we also have Lzi,(t, j) z 

IL:‘(~, f)12 according to (5) and thus we finally obtain 

i+‘(t,f,I = YH 9 SUP IL$(t, f)l z rH. t f 

Due to the approximate uniqueness of the GWS (cf. Sub- 
section 3.1), this approximation will also hold for Q # 0. 

4 CONCLUSION 

We have introduced an extended class of ‘underspread” lin- 
ear time-varving systems. For this type of systems, the 
generalized Wevl symbol is an approximate time-frequency 
transfer function that is similarly simple to use as the 
conventional transfer function of linear time-invariant sys- 
tems. We have provided quantitative bounds on the er- 
rors incurred by this approximate transfer function calculus. 
These bounds are based on weighted integrals and moments 
of the generalized spreading function and do not require the 
generalized spreading function to have finite support. 

Using l14il12 7 11~1112 and sin2z 5 x2: the second bound 
be shown m a similar manner. can 
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APPENDIX: PROOF OF THEOREM 3.1 

Using Sk2)(r u) = S(al)(r u)ej2aAar” where 4a = oi - 

cyz, the Fouriei transf:m of 41 (t, j) is given by 4, (~~1)) = 
~(a1 )trr u) (I- ej2rA-v), The first bound is then shown as 

IIl(t, f)l 5 Ilblll, =/I IsH(7,v)I (1-eej2xAarvIdrdv 
7 Y 

ISH(T, u)l Isin(r4crrv)l drdv 

ISH(?-, u)I 171 IvItZrdv 


