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ABSTRACT

We extend the approximate transfer function calculus of
“underspread” linear time-varying (LTV) systems intro-
duced by W. Kozek. Our extension is based on a new, gen-
eralized definition of underspread LTV systems that does
not assume finite support of the systems’ spreading func-
tion. We establish explicit bounds on various error quan-
tities associated with the transfer function approximation.
Our results yield a simple and convenient transfer function
calculus for a significantly wider and practically more rele-
vant class of LTV systems than that previously considered.

1 INTRODUCTION

Background. Linear time-varying (LTV) systems model a
variety of phenomena as diverse as speech production and
mobile radio channels. The input-output relation for an

LTV system (linear operator [1]) H is given by!
(Ha)(0) = [ het)at)at, o
tl

where h(t,t') is the impulse response (kernel) of H.
Unfortunately, general LTV systems are much more diffi-
cult to analyze and characterize than linear time-invariant
(LTI) systems, i.e., systems with convolution-type impulse
response of the form h(t,t') = g(t — #'). For an LTI sys-
tem, the transfer function (frequency respomse) G(f) =

[ g(r)e™*"/7dr is an extremely simple and efficient sys-
tem description. This is due to the following properties:

e The complex sinusoids {e’>"f*} are the eigenfunctions of
any LTI system, with G(f) the associated eigenvalue.
Thus, the response of an LTI system to a complex si-
nusoid /27! equals e727fot multiplied by G(fo).

¢ The Fourier transform of (Hz)(t) equals the Fourier
transform of z(t) multiplied by G(f).

o The transfer function of the series connection (composi-
tion) of two LTI systems H; and H; equals G, (f) G2(f).

e The transfer function of the adjoint of an LTI system
equals the complex conjugate of G(f).

¢ The minimum and maximum system gain are reflected by
the infimum and supremum, respectively, of |G(f)|.

A similarly simple characterization exists for “linear fre-
quency-invariant” (LFI) systems which have an impulse re-
sponse of the type h(t,t') = m(t) §(t — t'). Here, the factor
m(t) plays the role of a “temporal transfer function.”

In contrast to LTI or LFI systems, general LTV systems
do not allow a simple and efficient description via a uni-
versal “transfer function” with properties similar to those
listed above.
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YAll integrals go from —oo to oo.

Qutline of paper. This paper shows that the general-
ized Weyl symbol (GWS) introduced by W. Kozek [92] is an
approzimate transfer function for a practically important
class of LTV systems. The GWS of an LTV system H is a
(generally complex-valued) function of time ¢ and frequency
f defined as

L& ) 2 / B, 7)e 32 dr @)

RNt 1) = h(t+ (%—a)'r, t— (%+a)‘r) (3)

with a a real-valued parameter. For & = 0, 1/2, and —1/2,
the GWS reduces to respectively the Weyl symbol [2]~[6],
Zadeh’s time-varying transfer function [7|, and the Kohn-
Nirenberg symbol [6, 8] (equivalently Bello’s frequency-
dependent modulation function [9]). For LTI and LFI sys-
tems, the GWS simplifies to the spectral and temporal
transfer function, respectively.

Our results extend the pioneering work of W. Kozek
who developed a GWS-based approximate transfer function
calculus for a class of “underspread” LTV systems whose
spreading function (see Section 2) has compact support of
area < 1[10, 11]. In Section 2 of this paper, we shall extend
the concept of underspread systems using weighted integrals
and moments of the spreading function. Subsequently, in
Section 3 we will employ these integrals/moments to formu-
late explicit bounds on the errors incurred by the transfer
function approximation, thereby extending the GWS-based
transfer function calculus to a significantly wider and prac-
tically more relevant class of LTV systems than that con-
sidered in {10, 11]. We note that a different approach to
related topics is taken in the theory of pseudo-differential
operators [6, 8, 12].

2 EXTENDED CONCEPT OF
UNDERSPREAD SYSTEMS

In contrast to LTI or LFI systems (which cause only time
or frequency shifts, respectively), general LTV systems shift
the input signal with respect to both time and frequency.
Indee(]i, the output signal in (1) can be written as [2, 6, 9,
10, 13

where

(Hz)(t) = / / S (7, v) 29(t) drdy.
Here, :L'(,'f,}(t) = z(t — 1)l I @/ ig the signal
z(t) shifted by 7 in time and by v in frequency, with the
parameter a € R expressing a freedom in defining joint
time-frequency (TF) shifts, and S,(_{u )(r,v) is the generalized
spreading function (GSF) of H, defined as {2, 6, 9, 10, 13]

S§ ) 2 / ROt r) e g,
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Conceptuallv, an LTV system is underspread if its GSF is
concentrated in a small region about the origin of the (7, v)-
plane, which indicates that the system introduces only small
TF shifts 7, v. In [10, 11], the GSF of an underspread sys-
tem was required to be ezactly zero outside a small support
region about the origin. In practice, however, this condition
is often not satisfied exactly but only effectively. This poses
the problem of how to choose the effective support region
and how the resulting modeling error affects the validity of
the results based on the finite support model.

To circumvent these problems, we here propose to char-
acterize an underspread system by means of the following
(a-independent) normalized® weighted GSF integrals:
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Here, ¢(r,v) with ¢(r,v) > ¢(0,0) =0 is a weighting func-
tion which penalizes GSF contributions that are far away
from the origin. Fig. 1 shows some weighting functions to
be used in Section 3. We also define the GSF moments
Sf ) and Iﬂg") (k,! € Np) as special cases of mg) and
I(d’ using the weighting functions ¢(r,v) = |7[¥|v|". Mo-
ments with £k =0 or =0 penalize mamly GSF contribu-
tions located away from the 7 axis or away from the v axis,
respectively, whereas moments with ¥ = [ penalize mainly
GSF contributions located away from the 7 and v axes, i.e.,
lying in oblique directions in the (7, v)-plane (cf. Fig. 1).
The GSF integrals and moments measure the spread of
|Su (7, v)| about the origin of the (7, v)-plane. Hence, with-
out being torced to assume that the GSF has finite support,
we can consider a system H to be underspread if m(d’) and

z‘w’l{f ) are “small.” {Note that this concept is much less re-
strictive than the concept of “slow time-variation” which
requires |Su(T, ¥){ to be narrow with respect to v.) Since
the GSF and the GWS are a 2-D Fourier transform pair,
the GWS of an underspread system is a smooth function.

3 TRANSFER FUNCTIO JALCULUS
In this section, we show that for systems that are un-
derspread in H’m extended sense of Section 2, the GWS

L;f,’ (. (t, f) defined in (2) is an approximate “TF transfer

function” that generalizes the spectral (temporal) transfer
function of LTI (LFI) systems. More specifically, we estab-
lish explicit upper bounds on the errors associated with the
transfer function approximation. These bounds are partly
similar to bounds derived in [10, 11], but they use the GSF
integrals/moments defined in Section 2 and do not assume
the GSF to have finite support. Hence, our subsequent re-
sults show that a GWS-based transfer function calculus is
valid for a 51gmﬁca.nt1y wider class of underspread systems
than that considered in [10, 11].

3.1 Approximate Uniqueness of the GWS
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uniquely defined, the GWS of an LTV system depends o

o

2The weighted integrals are normalized by the Ly and L.
norm of 5(0)(1 v), ||SH||1—f f |Su(r,v)|drdv and ||Su ||§
I 1su(mn)Pdrde = [, [, |H(t,t2)|? dtrdts = ||HI3.
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Fig. 1. Gray-scale plots of some weighting funciions: (a)
k k

o(r,v) = |7|5, (b) o(r,v) = [v|¥, (c) ¢(r,v) = Tu|", (d)

$(r,v) =]1- Al rf v)| with AL (r,v) the ambiguity func-

o(r,v) V) the ambiguity func

tion of a normalzzed Gausszan functzon (cf. Subsection 8.4).
We note that darker shades correspond to larger values.

the parameter . However, this dependence is bounded
according to the following theorem.?

Theorem 3.1 For any LTV system H, the difference
At )= Li‘;l)(t, - Lif;z)(t,f) between two GWSs with
parameters a1 and az is bounded as
AL (t, F)I o A,

1) A\

527r|a1—azlm i Tz
2
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For an underspread system whose moments my;'"’ and

M(1 D will be small these bounds show that the GWS is

’pp ium.bcx_y 1uut:p!.uucul, of &, i.e. y

LEV, ) = L2, f).

Hence, the TF transfer function of an underspread system is

approximately unique. We note that small m(l Do M(1 R
requires the GSF to be concentrated along the T and v axes
(i-e., not oriented in oblique directions).

3.2 Adjoint Systems
The transfer functlon of the ad_]Olnt [1] of an LTI system
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GWS of the adjoint H of an LTV system H is L(° t,f)=

( a)"l; £\ PO SR rla)*r, oy o N
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H'Hwewer Theorem 3.1 leads to the following bounds.
A2

Corollary 3.2 For any LTV system H, the difference

system i arrer

Aq(t, f) = (a) (¢, F) — L (¢, f) is bounded as
18208, F) o “52”2 (L)
< 47|lajm My
TSal, < AmlelmET Ty, < 4l

For an underspread system, these bounds show that

r()/ ;vr( )*/
Ly, fl= Ly ().

Unlike in the LTI or LFI case, the GWS of a self-adjoint
(Hermitian) system (i.e., a system satisfying Ht=H) is not

real-valued for a #0. Corollarv 3.2 implies that the imag-
inary part of the GWS of a self-adjoint system, Z(t, f) =

3The proof of this theorem is outlined in the Appendix. The
proofs of subsequent theorems are partly similar; they can be
found in [14] and will here be suppressed due to space limita-
tions. For all bounds, the respective GSF integrals/moments are
assymed to exist.

“Here, IIA1[12 denotes the Ly norm of A (t, f) defined as

la? = f ff|A1(t H|?dtdf. We shall consider bounds on

the normalized error magnitude and Ls norm. The magnitude
agil 2 m. 1i0¢ magnituae

is normalized by [|SH]||, since ILS)(t, Al £ lISull;, and the L;
norm is normalized by ||H}|, since IILS)IIZ = [iHll,.



LY H-LE N = L1 N - L ¢ )] =
3782(t, f), is bounded as

1Z(, £)|
ISkl

Hence, the GWS of an underspread, self-adjoint system is
approximately real-valued even if a # 0.

s (1,1) Iz, . S(1,1)
<orlalm?, g <
2

3.3 Composition of Systems

The transfer function of the series connection (composition)
of two LTI systems H; and H; equals the product of the in-
dividual transfer functions, G1(f)G2(f), and similarly for
LFI systems. In contrast, the GWS of the composition
H:H; of two general LTV systems is not equal to the prod-
uct of the individual GWSs of H; and Ha.

Theorem 3.3 For any two LTV systems H,, Ha, the error
Aslt, f) = Ly, (t, ) = LS (¢, f) LS (¢, f) is bounded as

|Aa(t, )i

a6 nla) £A\
o e S 27D )
ENAESN H1Ha v
with
(o) & 1. (01,0 1] .0 (o)
B,,;’th = |Ct+-2-‘mHl My, + la——i my My

The theorem shows that if H; and H: are such that

mg;l)mgf) and mg’lo)mg)’;) are both small, we have

L&u 1) = LY HLENE f).

(1,0)

Small m(}g’ll)m}h and mg"o)mg’;) requires that the GSFs

of H; and H; are both concentrated about the origin of
the (7,v)-plane, with similar orientation parallel to the T
or v axis. That is, |Su,(r,v)| and |Su,(7,v)| may not
be oriented in oblique directions or in significantly differ-
ent directions. For a = 0, the bound in (4) simplifies

since Bﬁ’z,ﬂz = —%(mg;”mg':) + mg;o)mg';)). It can here

be shown that (4) remains valid if Bg’fﬂz is replaced by

BY . with H, = UH,U* and H, = UH,U", where
212

U i‘s any unitary operator corresponding to a rotation or

some other symplectic coordinate transform of the (7, v)-

plane [6]. Thus, for a = 0, As(t, f) may be small even if

the GSFs of H; and H; are oriented in (similar) obligue

directions. For @ = 1/2, we obtain B&n}){z = mg'll)mg';)),

which may be small even if |Su, (7, v)] is located along the
7 axis and |Su, (7, V)| is located along the v axis. Similarly,

for a = —1/2 we have Bl(_l_llf_fz) = mg’lo)mg';), which may

be small even if |Su, (r,v)]| is located along the v axis and
|Su, (7, v)| is located along the 7 axis.

Of particular importance (cf. Sections 3.4 and 3.6) is the
composition of H with HY, i.e, H, = H and H, = H*.
Using ||Sy+1l, = ISull, and mg_’;i) = mg:‘” in Theorem 3.3,
and combining with Corollary 3.2, it can be shown that the

difference A4(t, f) = Lg_‘;_iH(t,f) - |L§_‘;)(t,f)|2 is bounded

as (the same bound holds for HH™)

[Aqlt, ) A 0,1) (1,0 1,1 -
w < ¢y 2 2ar(camPImipy® +2lamyV), (5)
1

with co = [+ 1/2] + |& — 1/2|. Hence, for an underspread
system we have

[+ Q 2
L L) = I8¢ |

The bound Cl(;) is tightest for @ =0, in which case C,(_?) =
27rm;2'1)mg‘°). For || € 1/2, ca = 1 and thus C’,(_;’) =
ZW(mS’O)m(}g'l) +2]a| mg’l)) < 2ﬂ(mg‘0)mg’l) + mg‘l)).

3.4 Approximate Eigenvalues and Eigenfunctions

The response of an LTI system to e/>"/o¢ (signal with per-

fect frequency concentration) is G(fo) e?2"/°, and the re-
sponse of an LFI system to JSt - to% (signal with perfect

time concentration) is m{te) 8(t — to). We now ask if the
response of an LTV system to an input signal s¢, () =

s(t—to) e?2"fot that is well concentrated about the TF point
(to, fo) is approximately Lg‘)(to, fo) Seg. o (), 16, if 844, 5, (£)
is an “approximate eigenfunction” of H with L;_‘; ) (to, fo) the
associated “approximate eigenvalue.”

Theorem 3.4 For any LTV system H, any TF point
(to, fo), and any normalized signal s(t) (i.e., ||s]l, = 1),
the difference As(t) = (Hsto,fo)(t) - L(}‘;)(to.fo)sto,fo(t)
ts bounded as

|As]| A os (@
”51-1”2 < Dg")s = CI(;) +2m§_l )-i-m;;ﬂr)H, (6)
1

with the weighting function ¢s(r,v) = |1 — A (7, 1) where
Al (r,v) = ft s(t + (% —a)'r) s (t - (% +a)‘r) e I3V gt
is the generalized ambiguity function [15] of s(t), and where
CI(:) has been defined in (5).

Hence, for an underspread system H where Dg' )s can be
made small, we have the “approximate eigenvalue relation”

(Hsto,fo) (t) = LS)(tOr fo) st0.50(t)

which implies that the GWS Lg‘ )(t, f) can be interpreted as
an approximate eigenvalue distribution over the TF plane.
In particular, small mg_f +) and mg’ ;)H requires that, on the
effective supports of |Su(7,v)| and of |Sy+y (7, V)|, there is
és(7,v) ~ 0 and thus A (r,v) = A{(0,0) = 1. The lat-
ter condition can be satisfied only if these effective support
regions are small, i.e., if H is underspread. We note that

the bound Dg")s is tightest for o = 0.

3.5 Input-Output Relation

For LTI systems, the Fourier transform of (Hz)(t) equals
the Fourier transform of z(t) multiplied by the transfer
function G(f). Similarly, for LFI systems (Hz)(t) equals
m(t) z(t). In the case of LTV systems, one may desire a sim-
ilar “input-output relation” stating that a suitably defined
TF representation of (Hz)(2) equals the TF representation
of z(t) multiplied by the TF transfer function Lg’)(t, f). In
the following, we use as TF representation the short-time
Fourier transform (STFT) [16] defined as

STFT{ (4, f) =/x(t’)w‘(t’—t)e‘ﬂ”f"dt',

tl
where w(?) is a normalized window function.

Theorem 3.5 For any LTV system H, the difference
As(t, f) = STRT (¢, /)= L (¢, £) STETE (8, f) with ar-
bitrary normalized STFT window w(t) is bounded as

Asll,

|As(t, £)] (a)
< p@& A28l
= TRe = 2,

126\, J)L < V2 ME)
[EE R = H o



with the weighting function ¢y (T,v)= \/1 - Re{AE.?)(T, v)}
and D(P;”)w as defined in (6).

Hence, if Dg)w and 1\/[,(:"") can be made small by suit-
able choice of w(t), we obtain the approximate input-output
relation

STFTW)(¢, f) = L(¢, f) STFTL (¢, f) .

Small ! [,(_lé“’) requires that Re{Af,,")(T, v}~ ALN(0,0) =1
on the effective support of |Su(r,v)|, thus implying that
this effective support is small, i.e., that H is underspread.

3.6 Minimum and Maximum Gain
The minimum and maximum system gain are defined as

: I Hz||,
vu = inf , Tu = su =,
A TN o T
For LTI and LFI systems, vu and I'g equal the infimum and
supremum, respectively, of the magnitude of the transfer
function. The squared magnitude of the transfer function
of H in turn equals the transfer function of H*H. For
general LTV systems, on the other hand, yu and I'u are

not related to L;‘;)_H(t, f). In the following, we restrict to

(t, f) is real-valued, and we consider

a . |Hzl, a

o = 0 since Lng

in A su [aY
| A ltn;Lgl_H(t,f), Lye, = up LY, (¢, 1).
f t,
Theorem 3.6 For any LTV system H, the difference
between the infimum/supremum of L® (t, f) and the

H+H
squared minimum/mazimum system gain is bounded as
inf _ 2 sup ZI
|Ligha =~ 7] #2) Lpem — Tl _ o0
Seell? = "'H+nH Sl = "H+R"
Smlly lISwlly

with the weighting function ¢s(r,v) = |1 - ;@hL where
M T

s(t) is an arbitrery normalized function.

(¢s)

Hence, if m can be made small by suitable choice of

N Myt
the function s(t), we have
inf ~ a2 sup ~ T2
LH+H ~ MH, LH+H ~ FH .

Small mg’;)H requires that A (r, v) & A§°)(0, 0)=1lon
the effective support of |Sy+ (7, v)|, thus implying that

the effective support of |Sy+ (7, V)| is small, i.e., that H
is underspread. In that case, we also have LSLH(t,f) =~

|L;g)(t, f)|2 according to (5) and thus we finally obtain
itnff|L§2)(t,f)| ~ YH, sufp|L§2>(t,f)| ~Tn.
, t,

Due to the approximate uniqueness of the GWS (cf. Sub-
section 3.1), this approximation will also hold for a # 0.

4 CONCLUSION

We have introduced an extended class of “underspread” lin-
ear time-varying systems. For this type of systems, the
generalized Weyl symbol is an approximate time-frequency
transfer function that is similarly simple to use as the
conventional transfer function of linear time-invariant sys-
tems. We have provided quantitative bounds on the er-
rors incurred by this approximate transfer function calculus.
These bounds are based on weighted integrals and moments
of the generalized spreading function and do not require the
generalized spreading function to have finite support.

APPENDIX: PROOF OF THEOREM 3.1

Using S,(:ﬂ(r, v) = Sé;”)(r, v) el ™8™ where Aa = a; —
az, the Fourier transform of Ay (t, f) is given by A, (r,v) =
Sf_;”)('r, v) (1 —eﬂ”A‘""). The first bound is then shown as

201 < 18l = [ [ isat 1= dras
= 2//|SH(T, v)| Isin{wrAarv)| drdv
< 27r|Aa!//[5H(T,u)| || |v|drdv
= 2n|Aal||Sull, mi?.
Using |[A1]l, = ||..&1[|2 and sin’z < z?, the second bound
can be shown in a similar manner.
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