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ABSTRACT 

This paper presents a study aiming to define a nonlinear model, 

based on the Volterra series, of the high density optical disc read 

out process. I!nder high density condition, because of the high 

linear density and reduced track pitch, the signal read out is not 

a linear process and suffers from cross talk. To cope with such 

a problem the identification of a suitable nonlinear model is re- 

quired. According to the Hopkins analysis. a physical model based 

on the optical scalar theory was implemented. The results of this 

analysis have then been used to identify the kernels of a nonlin- 

car model based on the Volterra series. The obtained results show 

that a second order bidimensional model is sufficient to accurately 

describe the read out process. The nonlinear Volterra model is a 

convenient starting point to devise and analyze nonlinear cqualiza- 

tion and cross talk cancellation techniques. 

1. INTRODUCTION 

The information density on optical discs can be augmented tither 

increasing the operating spatial frequency or decreasing the track 

pitch (the distance between adjacent tracks). In high density sys- 

tems the read out signal is significantly affected by InterSymbol 

Interference (ISI) and cross talk (XT) among adjacent tracks. The 

recovery of the recorded signal can then bc performed only by a 

suitable signal processing and channel equalization process [ I]. 

The optimization of this process requires the characterization ot 

the channel in order to be able to compensate for signal distortion. 

The definition of a suitable model of the read out system is therc- 

fore a fundamental step, to be discussed in this paper. 

In order to determine the input output relationship of an optical 

disc system. it is necessary to evaluate accurately the read out sig- 

nal. In case of high density recording, the linear model based on 

the Modulation Transfer Function (MTF), is no more realistic and 

a more complex one is required [2]. A model closer to the read out 

process was firstly developed by Hopkins [3] using a scalar theory 

approach. The scalar theory can be applied also to high density op- 

tical discs, even if pit dimensions of the order of one wavelength 

are involved, because light reflection is performed through a mate- 

rial with a refractive index that reduces the effective wavelength. 

In our work an optical physical model has been implemented. This 

model has then been used to identify a nonlinear analytical model 

based on the Voltcrra series. This model has two great advan- 

tages: first. it allows to simulate the read out signal, for a given 

data sequence, much faster than using the optical model; second, 

and most important, it explicitly brings the dependence of the out- 

put on input data. as we shall see shortly. 

The experimental results show that a second order nonlinear model 

is a good approximation of the read out process. 

The paper is organized as follows. In Section 2. the implemented 

optical model is described. Section 3 is dcvotcd to the descrip- 

tion of the procedure used to estimate the Volterra kernels. and 

shows some experimental results. The following Section prcscnts 

the second order “bidimensional” model in presence of cross talk. 

Concluding remarks arc given in the tinal section. 

2. THE OPTICAL MODEI, 

Hopkins’s analysis [3] is shortly dcscribcd as follows. From the 

laser source the light propagates, through the lens, towards the 

disc surface. The scalar theory describes mathematically the field 

propagation as a Fourier transform of the scalar input held. Hop- 

kins modeled the disc rcflcctivity making use of the Fourier sc- 

ries analysis for periodic structures. The reHected light is sim- 

ply equal to the phase profile of the disc times the incident held. 

The photodiode signal is the electro optical conversion of the re- 

Hccted field after backpropagation to the detector, that is after an- 

other Fourier transform. Instead of calculating the time consum- 

ing Fourier series coefficients for quite short periodic sequences. 

the implemented model [4] evaluates the light incident on the dc- 

tcctor as a simple multiplication of the incident field by the disc 

reflectivity function and a single 2D Fast Fourier Transform. For 

a disc surface of length L and width W. the incident held on the 

photodetector plane a’ (x: ?/) is 

DC SC 

.P(z!y)f(z - F?Y - +, (1) 

where R,,,,, is the coefficient matrix of the 2D Fourier expansion. 

v the tangential velocity of the disc, P(z! 1)) the “pupil function” 

taking into account also the geometrical parameters rclatcd to lens 

aberrations (spherical aberration. coma, defocusing, astigmatism 

and tilt), and f(~? ~1) the power density of the laser beam. This 

leads to a physical model where the sensitivily of the system to 

these paramctcrs can be evaluated. The intensity of the incident 

field is: 

I(z,y) = 1”‘(“,y)12. (2) 

If < is the sensitivity function of the photodetector, the outpul elec- 

trical signal is given by 

. . 

-s(t) = 
II 

1(X? y) [(X? y)dzdy. (3) 
r*+y2<1 

This model can be used to evaluate the read out signal also if some 

amount of light impinges neighbouring tracks. and the dctcctor 

picks up unwanted signal from them. 



The described model has been used to simulate the playback 01 

different sequences recorded on the disc. First the pitlength of the 

Compact Disc Digital Audio (CDDA) system, namely 0.9 ~711. has 

been considered. The general results of the analysis carried out 

through the physical model, show that a linear model for the op- 

tical system is not an accurate approximation for higher density 

optical discs [S] [6]. If we analyze the details of the scalar theory, 

we see that the propagation of light can be represented as a chain ot 

linear transformations, followed by the quadratic distortion gener- 

ated by the photodctection process. This means that a second order 

analytical model is sufficient to represent the read out process. as 

long as the Hopkins scalar theory holds. 

3. THE MONODIMENSIONAL VOLTERRA MODEL 

In order to estimate the nonlinear characteristics of the optical disc, 

a mathematical model based on a Volterra series is considered 171. 

The functional input output relationship y(t) = f[~(t)] is: 

y(t) = ho + 
I 

lll(r)z(t - T)dT 

+ 
II 

hZ(71) T2)2(t - 71)2(t - TZ)dTl dr2 + (4) 

The zero order term ha accounts for the response to a zero input. 

The first order kernel hr(t) is simply the impulse response of a 

linear system. Higher order kernels can thus be viewed as higher 

order impulse responses, which characterize the various orders of 

nonlinearity of the system. 

As discussed in Section 2, a second order Volterra model is ex- 

pccted to give an accurate analytical description of the read out 

process. 

Likewise. the response to a single impulse in ‘~2 is 

!/l(t) = ho + h,(t - n) + lLz(t - -0: t - 72). (7) 

From the above equations WC get the second order kernel 

112(t - Tl! t - 7’2) = &,1*(t) + ho - ?/l(t) - y2(t)). (8) 

Finally, the first order kernel is given by 

lf,(t - 71) = yl(t) -ho - hz(t - r1,t - 71). (9 

Note that 71 = 72 is not allowed, as this would require an im- 

pulse with amplitude 2. which has no physical meaning. Hence. 

ha(r, r) is obtained by interpolation from the values of h?(~l. ~2) 
with 71 # ~2. The “polar” Voltcrra kernels are shown in Figs. I 

and 2. 

I- 
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3.1. Calculation of the Volterra kernels 

Volterra kernels could be evaluated, in principle. by means of Eqs. 

l-3. WC preferred a different approach. A simple means to identify 

Volterra kernels of second order systems is to probe the nonlinear 

system with pairs of impulses [g]. If we associate the amplitude 0 

to lands, and I to pits, the test sequences consist of two short pits 

at appropriate locations. 

In most cases. e.g. when we analyze the performance of an equal- 

izer, we prefer to consider a “bipolar” input, namely fl, instead 

of a polar one (0.1). It is straightforward. howcvcr, to translate 

kernels from polar to bipolar representation of data 151. In the fol- 

lowing, primes indicate “bipolar” kernels. 

The kernel ha is the output when the input is identically equal to 

0. that is when a mirror disc is used. 

To evaluate the higher order kernels 111 and ha. a small pit of 

3Orana spatial width was chosen as a unitary impulse. As the com- 

putation of the Ar kernel is based on the knowledge of hz. the latter 

is evaluated first. 

When two impulses h(t - ~1) and b(t -Q), are applied to a second 

order system. the output is [g] 

y,z(t) = ho + llI(t - TI) + hl(t - 72) + llZ(t - 71,t - r,)+ 

+112(t - ‘T2: t - 7’2) + 2hz(t - 71, t - F2.L). (5) 

while the response to an impulse in ~1 alone is 

?/l(t) = ho + Ill (t - Tl) + hz(t - 71. t - 71). (6) 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
rn,cr0sec. 

Figure 1: First order normalized Volterra kernel. 
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Figure 2: Second order normalized Voltcrra kcmcl. 

The output signal coming from the physical optical model has 

then been compared with the output of the nonlinear model based 



on Volterra series for an EFM (Eight to Fourteen Modulation) se- 

quencc input signal, and the CDDA standard’s parameters (the 

minimum pit or land length 1 = O.S/im). The input signal can be 

subdivided in small impulses of 30n7n each. In the CDDA stan- 

dard, however. pit and land lengths are multiple of 0.3 p7n, due to 

the Run Length Limited (RLL) code. Hence. we can also evaluate 

the first and second order response to rectangles this wide, and su- 

perpose them according to the data. The evaluation of the modified 

kernels requires simply one and two dimensional discrctc convolu- 

tions. The output signals obtained by the optical model and by the 

Volerra scrics are so similar that it is not possible to distinguish be- 

twccn them. This result confirms that the (second order) Volterra 

model agrees with the scalar Hopkins theory. 

If we want to consider a bipolar input signal z’(t) with -1 as- 

sociated to lands and +l to pits, we can express the corresponding 

polar signal as z(t) = + + +. 

Substituting the above expression into Eq. 4 WC easily obtain 

that the “bipolar” kernels arc 

1 1 . 
h,(T) = -h1(T) + - 

2 2 IS ll.L(T: rz)dr2 (11) 

(12) 

It is noteworthy that part of the second order distortion is folded 

into the linear term h;(t). Fig. 3 shows the complete Voltcrra 

model’s output. compared to the contribution of the first order kcr- 

ncls jr.1 (t) and h’,(t). 
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Figure 3: Output signals. Solid lint: complete Volterra model. 

Dotted line: contribution of h;(t). Dashed line: contribution ol 

hl (t). 

The contribution of the linear term alone is much closer to the 

physical model output if the bipolar approach is chosen. Second 

order terms arc clearly exaggerated by polar kernels. Since this 

conclusion holds for all the examples we worked out, in the fol- 

lowing only bipolar kernels are considered. Polar kernels are to be 

used only for identification purposes. 

4. THE BIDIMENSIONAL VOLTERRA MODEL 

The expressions derived so far rcprcscnt the optical model only if 

XT is negligible. 

Ifzl (t) and 2- I (t) arc the inputs corresponding to adjacent tracks, 

the signal read out in prcscncc of XT is 

y(t) = lao + 2 [J rt; (T)xz(t - T) (jr + 

r=-I 

+ 
II 

lL;(Tl,T2)2,(t -T1)zi(t - rz)dr,dn]+ 
. , 

WC can easily obtain the monodimcnsional kernels of each 

track, applying the same method dcscribcd in Section 3. To ob- 

tain the cross kcrncls /$I and hi” we apply the inputs 

Q(t) = s(t)? z,(t) = b(t -T), Ll(t) zz (), 

Then 

y(t) = h0+2/~(t-T)+yjl(t)+h:‘(t, t-T)+l&“(t-T. t) (l3j 

where y:(t) is the signal on track ‘!O” (after subtracting 1~0 ), when 

an impulse b(t) is the input signal on track “I”. 

All the couples of cross kernels have the following simmetrics: 

h;“(tl.fz) = l$(tz. t,)? ah = 10! -10: -11 (14) 

This means that the coupled cross kernels offer the same contribu- 

tion IO the total output. Then. Eq. 13 can be written as follows: 

g(t) = ho + yj(t - T) + v,!(t) + 2hy(t. t - T) (13 

Exploring all values of T, and subtracting the contribution of both 

tracks, it is possible to estimate II’,” (tl, t2) along the lines 

tz = fl - T in the (tl. t2) plane. 
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Figure 4: Hopkins model output (solid); Voltcrra model’s output 

signal without cross kernels (dotted); first order kcrncls (dashed). 



Now it is interesting to evaluate the relative amplitudes of first 

order, monodimensional second order, and cross terms. Fig. 4 

shows the Hopkins model’s output (the Volterra’s one is an exact 

copy). and the Volterra model’s output without cross kernels. WC 

considered the CDDA standard’s parameters, with the only excep- 

tion that the distance d between adjacent tracks was reduced from 

1.6 p7rt to d = 1.1 jrm. WC can see that in this cast cross terms 

are quite small. In the same figure we see that the contribution of 

first order kernels alone is close to the total output signal, but for 

a constant. In Fig. 5 the Hopkins model’s output is compared to 

Volterra’s model without cross kernels. and to Volterra’s lirst order 

output. as before, for a shorter track distance d = 0.7 IAm. Now 

XT terms arc stronger. and also cross kernels arc required to pro- 

duce an exact representation of the read out signal. In this case the 

first order kernel alone does not give a good approximation of the 

read out signal. A shorter distance between neighbouring tracks 

means more information density, but also a growth of nonlinear 

components. 
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Figure 5: Hopkins model’s output signal (solid line); Volterra 

model’s output signal without cross kernels (dotted); first order 

kernels (dashed). 

Considering the parameters of the Digital Video Disc (DVD) 

standard ((1 = 0.74 pm, 1 = 0.4 pm, wavelength of 650 7~7n) we 

obtained the results shown in Fig. 6. In this case the contribution 

of cross kcrncls is small. First terms alone. yet, do not give a good 

replica of the photodctcctor output. 

5. CONCLUSIONS 

In this paper a study devoted to the definition of a nonlinear model 

for high density recording on optical discs has hecn presented. A 

model of the read out system based on optical scalar theory and 

second order Volterra series was developed. 

The simulation results show a significant nonlinear behaviour of 

the read out signal. The results also confirm that the second order 

Voltcrra model can be adopted to define a non linear analytical 

representation of the read out process, also in prescncc of cross 

talk. and for each set of system parameters. In some cases. c.g. 

for the CDDA and DVD standards, second order cross kernels are 

negligible. However, also these terms must bc considered if WC 
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Figure 6: Hopkins model output(solid): Volterra model’s output 

signal without cross kcrncls (dotted); first order kernels (dashed). 

want to incrcasc the data density further. 

The nonlinear Voltcrra series is very fast to evaluate. Bcsidcs, it 

explicitly brings the dependence of the photodetector output on 

input data. Hence, the Volterra series is a convenient starting point 

to devise innovative nonlinear equalizers or cross talk canccllcrs 

for the optical channel (see, for instance 191). 
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