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ABSTRACT 

In this work we propose a novel ap roach for demodu- 
lating Continuous Phase Modulation CPM) signals based Q 
on the modeling of the instantaneous phase as a piecewise 
polynomial-phase function. The polynomial modeling can 
be a good approximation for currently used modulations 
or it can be-exact if the shaping pulse is chosen to be a 
oiecewise polvnomial function. The crucial step in the de- 
modulation p;ocess is then the estimation of the-polynomial 
coefficients, which is carried out using the so called prod- 
uct high order ambiguity function (PHAF). The proposed 
approach is suboptimal with respect to the optimal maxi- 
mum likelihood sequence estimation (MLSE) method, but 
is much simpler to implement and offers important advan- 
tages such as independence of initial phase, tolerance to 
Doppler shift and time-offset, blind channel identification. 
We show theoretical results concerning the minimum dis- 
tance among sequences, which leads to a lower bound on the 
error probability, together with some simulation results. 

1. INTRODUCTION 

Continuous Phase Modulation (CPM) [5] has the desirable 
properties of constant envelope and bandwidth efficiency 
and for this resson one particular class of CPM, namely 
the Gaussian Minimum Shift Keying (GMSK) modulation, 
has been selected as the standard modulation in the GSM 
and DECT systems 
the demodulation o 1 

lo]. In general, the optimal solution to 
CPM signals consists in a Maximum 

Likelihood Sequence Estimator (MLSE), implemented us- 
ing Viterbi algorithm [5]. In this work we propose a novel 
approach to CPM signals demodulation based on the mod- 
eling of the instantaneous phase as a polynomial function 
within each symbol interval. We will show that a third 
order piecewise polynomial function can fit currently used 
CPM sisnals (e.s. the GMSK used in the GSM mobile com- 
munica<on s$&m) with negligible error or can model the 
instantaneous phase exactly, under a proper choice of the 
shaping pulse. The polynomial modeling allows us to recast 
the demodulation process in terms of parameter estimation 
of Polynomial-Phase Signals (PPS), which has received con- 
siderable attention in the recent literature (e.g., see (81 and 
the references therein). More specifically, in this paper we 
propose a method for demodulating CPM signals using the 
so called Product High order Ambiguity E%nction (PHAF) 
as the basic tool for estimating the PPS parameters. The 
PHAF was introduced in [2] and [3], as a eneralization of 
the High order Ambiguity Function (see [8 

B 

. 
Given a finite length sequence s(n), with n] 2 (N- 1)/2, 

its m-th order high order instantaneous moment 
d 
HIM) is 

defined as sr(n 

3 2 

= s(n for m = 1 and via the 
recursive rule 12 : s,+i 

ollowing 
n;s,) = s,(n+r,;~,-r)sk(n- 

T,,,; T,,,-I), for m > 1, where T,,, := (~1,~s~. . . ,rm) is the 
vector containing alI the lags&The main motivation for in- 

traducing the HIM is that if s(n) is a PPS of degree !M: 

i.e. s(n) = Ae j2rCzzo amnm 
, its Mtli order HIM is a si- 

nusoid with frequency f = fo = 2”-‘M! flr=A’ rf)a.w. 

The multilag (ml) high-order ambiguity function (HAF) is 
defined as the discrete Fourier transform of the HIM, i.e. 
SM((f;rM-1) = .~={sM n;r,v-I)}. The High-order Am- 
biguity Function (HAF \ [S] is a special case of the ml- 
HAF: corresponding to the situation in which the lags 
are all equal to each other, i.e. TM-1 = (T! T.. . , Tj. 
Therefore the HAF of an Mth degree PPS has a peak at 

f = fo = 2”-1M!nEA’ $)a~ (21. The estimation of 
by can thus be obtained by searching for the peak of its 

Mth order HAF [S]. Multiplying s(n) by e-janaMfiM we re- 
duce the order of its phase and estimate all the other lower 
order phase coefficients by reiterating the same procedure. 
However, the HAF presents spurious peaks when the in- 
put signal is given by the sum of PPS’s having the same 
highest order coefficients [2]. Since this is exactly the situ- 
ation arising when PMSK si 
path channels (see Section 

als propagate through multi- 
4 $ , the use of the HAF would be 

troublesome in our case. To eliminate the ambiguities and 
to improve the performance of the HAF in the presence of 
noise, we introduced the so called product HAF (PHAF) in 
[2], computed multiplying the ml-HAFs obtained using L 
different sets of lags, after proper resealing [2]: 

(1) 

where $1 indicates the the Ic-th component of the I-th 

set and Th-,is the matrix containing all the sets of lags 
p ---- (2) CL) Me 1, 7M- r, .., rM- r . The main property of the PHAF is 

that, after resealing, the useful peaks remain in the same 
positions, whereas the spurious peaks move along the fre- 
quency axis, so that after the multiplication the useful 
peaks are strongly enhanced with respect to the spurious 
ones. The combined scaling/multiplication operation pro- 
vides also a consistent gain with respect to noise terms and 
cross terms [3]. After having estimated the polynomial coef- 
ficients, the transmitted symbols are then obtained through 
a simple linear transformation. The motivation underlying 
our proposal is threefold: i) the demodulation procedure is 
much simpler than MLSE and it permits symbol recovery 
from partial-response signals without any sequence estima- 
tion procedure; ii) the method is tolerant to Doppler shifts, 
time-offsets and initial phase shifts between transmitter and 
receiver; iii) the method allows for blind channel identifica- 
tion, within some constraints imposed by the signal band- 
width. 



2. POLYNOMIAL-PHASE MODELING 

CPM signals <assume the following general expression [5]: 

s( t,) = Aej+(tia), (2) 
where a! is the vect.or containing the transmitted symbols ” 
and 

@(tl a) = 2X/Zj? 2 Ctiq(t - iT), (3) 
i=-00 

with q(1) = s:“, g(r)&. {oi} is t,he sequence of transmit- 

ted symbols, g(t) is the shaping filter impulse response, hi 
is the modulation index, T is the symbol period. Transmit- 
ting a binary sequence with o - i E (-1, l}, the bandwidth 
is h//T. 

In general g(t) = 0 for t < 0 and t > MT, where M is 
an integer number denoted as correlation length [S]. CPM 
signals with A4 = 1 are called fill response signals whereas 
signals with M > 1 are referred to as partial response sig- 
nals In CMSK: the function g(t) is [5]: 

g(t) = $[Q(27rB$= dln2)) 
(4) 

where Q(t) = h s!, e -“2i2du. We define the Polyno- 

mial Minimum Shift Keying (PMSK) modulation as in (3)! 
using gM(t) instead of g(t), where: 

gM(t) = $7’{sin?(nTf)}. (5) 

.F’-‘{X(f) 
i 

denotes the inverse Fourier ‘lIansform of X(f) 
and sinc(z = sin X)/Z. 

I 
Functions such as (5) are exam- 

ples of B-splines [6 ; more specifically, gM(t) is a piecewise 
polynomial continuous function of duration mT that can be 
expressed in closed form as follows: 

M-l 

L&)=&C ,o giu I t rectT(t-(l-(M-l)/2)T)), (6) 
I=0 

where r&T(t) = 1 for ]t] 5 T/2 and r&T(t) = 0 for 
ItI > T/2, and 

C-1) 
/c It - @ - MIW”-‘, 

(M - l)! 
c7I 

Substituting (6) and (7) in (3) we can verify that the instan- 
taneous frequency (phase) is a polynomial of degree A4 - 1 
(M), in each generic interval (nT, (n + l)!Pj, and the poly- 
nomial coefficients are linearly related to the transmitted 
symbols through the following identity: 
M-l 

c (i+l)&i+~ (t-nT)’ = &y an-IsgM(t-(n-k)T). 

i=o k=O 

Using (7), we can find the desired relationship betw &I 
polynomial coefficients and symbols. For example, for 
M=l, 2 and 3, we have the following matrix relationships: 
M=l 

or, in a matrix form: 
p, = Man. (12) 

This relationship is the basic step to recast the demodu- 
lation of CPM sirrnals in terms of parameter estimation of 

3 I . DEMODULATION OF PMSK SIGNALS 

The demodulation of PMSK signals can be carried out via 
the following steps: 

1. For each symbol interval (nT: (n + l)fl estimate t,he 

vector of PPS parameters j,; 

2. Estimate vector of symbols al; as (see (12)): 

&, = M-‘&l ( 13) 

3. Combine estimates made over consecutive intervals and 
take decisions upon the transmitted sequence. 

In PI, we evaluated the covariance matrix CL3 of t,he es- 

timates 5, obtained using the PHAF. In particular, we 
proved that, CD tends to the Cramer-Rae lower bound 

(CRLB), up to a multiplicative constant, for high SNR. 
The multiplicative factor decreases as the number of prod- 
ucts L used in the PHAF increases [2],(3 
L = 1 the PHAF coincides with the HAF 1 

(in particular for 
At low SNR, the 

performance drops down because of the nonlinearity of the 
PHAF. However, increasing L, the SNR threshold also de- 
creases, although it cannot go below certain lower bounds 
(around 0 dB) [9]. Moreover, at high SNR. and for t,he 
number of samples going to infinity, the estimates tend to 
be Gaussian random variables (rv) m .,%‘(O: C8 j. Because 

of (13), the symbol estimates &, are also asymptotically 

Gaussian rv w J\/(O, M-‘CBM-~), where the subscript 

n has been dropped due to the stationarity of both trans- 
mitted sequence and receiver noise and the superscript -T 
denotes inverse and transposed. Thus, based on the obser- 
vation of the only nth interval the decision on the symbols 
a(n) is the vector is the vector ai which minimizes the 
following weighted norm: 

ak = aTgmini{(&(n) -ai)TC,l(&(n) - ai)} (14) 

where a(n) contains the estimates made in the n-th in- 
terval, whereas the vectors ai contain all possible vectors 
of symbols (i = 1,2,. . . , PM, if a P-ary constellation is 
used and in each interval we estimate M symbols) and 

C& = M-‘CbM-T. This decision rule represents the 

minimum mean square error MMSE) solution and it ap- 
prosches the maximum 6 likeli ood (ML) solution as the 
number of samples per symbols tends to infinity and for 
high SNR 

4. PROPAGATION OF PMSK SIGNALS 
THROUGH REAL CHANNELS 

Transmission over real channels is generally affected by un- 
desired effects like Doppler frequency shift and multipath 
propagation phenomena. 

4.1. Doppler frequency shifts 
In case of a Doppler shift fD, the received signal can be 
written as: 

v(t) = Aej2”Cnm_-mC~oB”.i(t-nT)i ejz*lDt + w(t). (15) 

where w(t) is AWGN. This means that the only effect of-the 
Doppler shift is to alter the first order coefficient &,.I. The 
implication of this distortion on the symbols estimate can 
be evaluated as follows. Denoting by a; the altered sym- 
bols, we have (we consider the csse M = 3 only for clarity 
of the exposition, but the results are valid in general): 

(d-~,d,,d,+,) = (a,-l,o~,a,+l)+~(l,1,1). (16) 

Therefore the effect of the Doppler shift is simply to intro- 
duce a bias on the svmbols estimate directly proportional to 



fo. As a consequence, the shift can be detected by checking 
t,he average value of the decoded symbol sequence: 

1 N 
lim - 

N-mN c 2l-f~ 
a:,=--. 

hF 
(17) 

n=l 

Since the transmitted symbol sequence is usually an ergodic 
zero mean sequence, an average different from zero reveals 
the presence of a Doppler effect which can also be estimated 
as follows: 

fD =&&I;. 

4.2. Time-offset 
TICI 

If there is a time-offset to between transmitter and receiver, 
instead of observing an instantaneous frequency 

(19) 

in the generic n-th interval, we observe the instantaneous 
frequency: 

fn (t)= 
nT-T/2 <t< nT-to 

nT--to < tl nT+T/2 

Manipulating the summations, the observed instantan l&L! 
frequency is: 

fn(t) = $kj: nl,,ktk, k nT - T/2 < t I nT - to 

k o ‘Yn+l,kt I nT-to < t<nT+T/2 

where (21) 
M 

-/n,k = 
c 

rOn,itk-‘y ‘h+l,k = cf!k h+l,ithmk. (22) 

i=k 

Considering the two highest order coefficients, we obtain: 

%M = Pp,M, ?‘p,M-I = P~,M-I + to&MM, (23) 

for p = n,n + 1. Thus, in the absence of noise, if we take 
the ratio between -&,,M-l and -fp&f, avoiding the cases in 
which Yp,M = 0, we obtain: 

DpM-1 

m = pM + toM. 8, 
(24) 

are zero mean random variables, 
a zero mean random variable 
Therefore, proceeding in a 

similar way as in the Doppler shift case, we observe that 
the average of the ratio &J$-I/@~,M is a constant equal to 
toM so that the estimator of the time offset is: 

(25) 

Remark It is important to notice that the time offset and 
the Doppler frequency shift can be estimated separately, 
even if they are simultaneously present. In fact, the Doppler 
shift only alters the first order coefficient, whereas the time 
offset alters all the coefficients except the highest order one. 
Therefore we initially compensate for the time offset, using 
only the high order coefficients, and then we compensate 
for the Doppler shift. 

4.3. Multipath propagation 
We consider now the propagation of PPS’s through a linear 
time-invariant (LTI) FIR channel described by the following 
impulse response: 

Q-1 

h(t) = c h(k)b(t - Tk), (26) 

where h(k) and rk are the complex amplitude and the delay 
of the k-th path, respectively, and c”(t) denot,es Kronecker’s 
delta. The transit of PPS’s through LTI-FIR. channels was 
already analyzed in (71, where was shown that. the output of 
an FIR filter driven by a PPS is multiple component. PI’S 
whose coefficients satisfy a special relationship. Exploiting 
t,hat relationship, it is possible to deconvolve the PI’S and 
to get the channel parameters h(k) as well. In [7] rhe delays 
rk were assumed to be known a-priori. In this work we show 
that all channel parameters can be estimated blindly (the 
amplitudes up to a multiplicative term). simply exploit,ing 
the polynomial-phase behavior of the input signal. 

When a PPS having coefficients a,,, , m = 0, . M passes 
through a channel described by (26) the output, is composed 
by multiple PPS’s whose coefficients bk,rr.! m = 0.. : M: 
k = 0:. . . , Q - 1, are relat.ed to the n,‘s via: 

M--i . _ 
bk,i = c ( ‘Ti )Q+i(-rk)’ 

Particularizing (27) tA=t!he cases i = M and i = M - 1, we 
have: 

b k,M = aM, bk,M-1 =aM-1 -&&4(--l-k). (2~) 
From (26) we notice that all the output signal compo- 
nents have the same highest order phase coefficient. This 
is exactly the case where the HAF-based approach [7] suf- 
fers from an ambipuitv problem. Since the PHAF solves 

* A 

such a problem [2]u, its use is well motivated in this par- 
ticular scenario. We are now able to describe the algo- 
rithm able to estimate all channel parameters blindly (i.e. 
without assuming any knowledge about the transmitted se- 
quence). We assume for simplicity that the channel order 
Q is known. Given the observed sianal v(t). the overall 
estimation method is the following: - -’ ” 

1. 

2. 

compute the M-th order PHAF of the observed PPS 
and then obtain 8~; 

compensate the M-th order phase term y](t) = 

dt)e I 
-j2*i,t". 

3. compute the (M - l)-th order PHAF of yr (t) and esti- 
mate the positions of the highest & peaks thus obtain- 

ingbk,M-1, k= l,...,Q; 

4. estimate the relative delays A7’k as: 
hk,O - bk,M-1 

A&:=Pk-iio= M8 , k=l,...,Q-1; 
M 

5. estimate all the phase coefficients &,,, , m = 1,. . , Ai% 
the first component; 

6. estimate the complex amplitude of each delayed path 
as follows: _ 

t=iir 

If T is sufficiently large and the estimates of the delays a3O6 n 
phase parameters are correct, the k-th component is co- 
herently integrated and then enhanced with respect to the 
other components. In the case of PMSK signals, the pre- 
vious analysis is only approximate because the PMSK is a 
piecewise PPS. However, there are two properties which can 
be advantageously exploited to enhance the useful compo- 
nents with respect to the undesired ones, except the com- 
ponents have a delay exactly equal to the symbol duration: 
i) the number of samples is N for the useful component and 
is less than iV for the delayed components; hence the peak 
of the PHAF is higher for the useful component; ii) the 
PPS parameters of the useful component belong to a finite 
alphabet (because. the symbols belong to a finite alphabet), 
whereas the other parameters, owing to the delays, do not. 
Some examples of )rpplication of these statements will be 
shown in the next section. 
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Figure 1. BER vs. SNR (dB) (N=16, M=3, L=l). 

Figure 2. BER vs. SNR (dB) (N=64). 

5. PERFORMANCE AND CONCLUSIONS 

In this section we evaluate the performance using two sets 
of parameters: the distance among sequences and the er- 
ror probability. Using the decision rule expressed in (14), 
a meaningful performance parameter is the minimum dis- 
tance among sequences 151: 

dii,, = ~~~(~i - aj)TC&’ (ai - aj). (31) 

Substituting the Fisher’s information matrix instead of C~’ 
and considering a BPSK transmission (i.e. ai E (-1, l}), 
we obtain: 

n2h2 A2 
din = $7 = $$$ ‘v 0.1762h;$, (32) 

n 
where Eb is the energy for binary symbol and No is the noise 
power spectral density. This minimum distance is achieved 
when there is only a difference on one bit between the two 

It is interesting to observe that the distance 
zpE%:nly upon the integrated SNR and on the signal 
bandwidth (through hF). 

Combining the estimates made over consecutive intervals, 
we can show that the minimum distance becomes: 

D2 = 457T2h: Eb ,., 3 6h2 Eb 
m*n 126oNn- * F-* No (33) 

We can clearly see the gain dueto the combined decision. 
We show now some simulation results reporting the symbol 
error probability as a function of the SNR 
a) Study case # 1: Single vs. combined decision. 

Fig.1 shows the BER obtained in a BPSK transmission 
as a function of the SNlbA2/uz. The number of samples 

per symbol is 16. The polynomial order is M = 3. The 
number of sets of lags used in the PHAF is L = 1. The 
normalized bandwidth (the bandwidth divided by the sym- 
bol rate) is 0.5. Dashed line refers to the decision taken 
on one interval whereas solid line refers to the combined 
decision taken according to the minimum distance criterion 
implemented using Viterbi’s algorithm. We can see that 
there is a gain in terms of SNR of about 6 dB. Indeed this 
gain is less than what we could predict from the analysis 
of the minimum distance shown above. This discrepancy 
is due to the fact that the MMSE solution leads to the 
maximum likelihood solution only if the estimates are mul- 
tivariate Gaussian random variables and, for N = 16, this 
assumption is only approximately valid. 
b) Study case # 2: Effect of polynomial order and num- 
ber of products Fig.2 shows the BER vs. SNR obtained 
using M = 2 and M = 3. For each M we use a number of 
products equal to 2 and 3. The number of samples is 64. 
This would be a high number in a practical application, but 
we have considered it here to have more degrees of freedom 
in the choice of the sets of lags used in the PHAF and then 
better understand the role played by L. We clearly see that 
the performance is better for M = 2. In fact, as far as M 
increases there is more induced intersymbol interference. 

In summary, the method proposed in this paper for de- 
modulating CPM signals is suboptimum with respect to 
the MLSE, but is much simpler to implement. Moreover, 
it exhibits better tolerance with respect to Doppler shifts, 
time offset and distorsions due to multipath propagation 
phenomena. 
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