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ABSTRACT 

We introduce a technique for identification of sys- 
tems with arbitrarily time-variant responses from sam- 
ples of their input and output signals, and without us- 
ing any prior information about the dynamics of the 
unknown system response. Our technique is based on 
the use of optimized averaging filters for the estima- 
tion of time-variant second order moments. We demon- 
strate the utility of our approach and the quality of the 
resulting estimates via a numerical example. 

1. INTRODUCTION 

Time-variant systems are often encountered in engi- 
neering applications, ranging from communications via 
atmospheric and underwater fading channels, through 
marine seismography and array processing, to study 

of biological signals. The failure of conventional (i.e., 
stationary-based) system identification techniques to 
cope with rapid time variation has motivated the de- 

velopment of several novel approaches to identification 
of linear, arbitrarily time-variant systems. 

In this article we introduce a technique for iden- 
tification of systems with arbitrarily time-variant re- 
sponses from measurements of their (stationary) input 
and (nonstationary) output signals, and zuilhovl any 
prior assumptions about the unknown system response. 
This is in contrast to currently available procedures, 
all of which rely on prior statistical characterization of 
the time-variant system response. 

The problem that sets the framework for our re- 
search is the identification of time-varying systems 
from input-output data, as depicted in Fig. 1, where 
W(t) denotes the time-variant impulse response of the 
system we wish to identify. Here u(t) is the input 
signal to the system, d(t) is the (noise-corrupt,ed) 
output, and t denotes discrete time. We adopt the 

so-called output error approach in which one attempts 

to determine the unknown W(t) by setting up a ‘du- 
plicate’ system with the same input u(t) and with 

Figure 1: Problem description 

impulse response G(t), and adjusting G(t) so that 
the output error 

e(t) = d(t) - Z(t) (1) 

is as small as possible. The synthesized output i&(t) is 

i(t) = 5 i&(t) U(t - k) = i?(t) u(t) (24 

where 

k=O 

i+(t) = [ii&(t) l&(l) . . . GM(t)] (2b) 

and 

U(1) = [u(t) u(t - 1) . . . u(t - M)]T . 

Similarly, 

PI 

d(t) = W(t) u(t) + v(t) (34 

where 

w(t) = [we(t) w(t) . . . wf(t)] WI 

and where the additive (stationary) noise v(t) is un- 
correlated with the input signal u(t). 

Several solutions were suggested for this time- 
variant identification problem: (i) the moment esti- 
mation approach - requires average autocorrelations 

of certain time-variant moments [l]; (ii) the weighted 
least squares approach - requires selection of a weight- 

ing sequence [2]; (iii) the function series expansion ap- 
proach - requires selection of basis functions [3]; and 



(;v) the state space (Kalman filter) approach - requires 
specification of state space model parameters [4,5]. 

In this paper we present a method for identification 
of arbitrarily time-variant linear systems whose input 

(i.e., the signal u(t) in Fig. 1) is stationary. Thus, our 
technique is useful in the broad range of applications 
where the input is either stationary by nature (e.g., 
fading communication channels), or can be selected at 
will (to be stationary). Our method combines the mo- 
ment estimation approach of [l] with a technique for 

efficient estimation of the required prior information 
directly from samples of the signals d(t) and u(t). 

The starting point for the moment estimation ap- 
proach, as discussed in [1,6], is the observation that 
the true response W(t) satisfies the linear (so-called 
“Wiener-Hopf”) equation 

&u(t) = E{d(t) u*(t)) = W(t) &u(t) (4) 

where Ruu(t) = E{U(t)U*(t)}. Moreover, when 
U(t) is stationary the time-invariant covariance ma- 
trix Ru” G Ruu(t) can be estimated by conventional 
techniques (such as exponential averaging [7]), so that 
the only serious remaining challenge is the estimation 

of the time-variant moment Rd~(t). The moment es- 
timation approach of [l] constructs an optimized linear 

estimate of Rdu(t) by using certain prior information 
about the joint statistics of d(t) and u(t). 

We show in Sec. 2 that such prior information can 
be expressed in terms of two average autocorrelations: 
the autocorrelation c,(m) = E{v(t + m)v*(t)} of the 
additive stationary noise v(t), and the deterministic 
autocorrelation of the response vector W(t), viz., 

G(m) = (W*(t) W(t + m)) (5) 

where ( ) denotes time averaging. Subsequently, we 
show in Sec. 3 how these average autocorrelations can 

be efficiently estimated from samples of the signals 
d(t) and u(t). Thus, we are able to construct an 

optimized estimate W(t) of the unknown arbitrarily 
time-variant response W(t) without using any prior 
information about the dynamics of either the system 
response W(t) or the additive noise v(t). 

2. MOMENT ESTIMATION WITH 
AVERAGING FILTERS 

In the moment estimation approach to system 

identification one replaces the probabilistic moments 
Rdty(t), RUU in (4) by suitable estimates &u(t), 

Rr~u(t). Since the time-invariant probabilistic covari- 
ante RIJU can be efficiently estimated by conventional 

techniques, we may assume that, as t -+ 00, the esti- 
mate &u(t) h as converged to its steady-state value, 

namely that &u(t) % Rau. Since we are interested 
here only in steady-st$e estimation zrrors, we may re- 

place the estimate W(t) = Rdv(t) Rib(t) by a sim- 

plified version, namely G(t) = &u(t) RGb. We have 
shown in [6] that the dynamics of the more refined es- 

timate &u(t) &j&(t) converge, as t + 00 , to those 
of the simplified version, so that these two estimates 
become indistinguishable in steady-state. 

As described in [l], the time-variant moment esti- 

mate Rdu(t) is obtained by applying an averaging 
filter H(e) to th e composite (multichannel) signal 
t(t) = d(t) u*(t). c onsequently, the simplified esti- 

mate 6?(t) = &u(t) R,b is obtained by scaling the 
input of the averaging filter, as shown in Fig. 2. 

d(t)U*(t)R$ -4 H(.) I- F(t) 

Figure 2: Obtaining f?(t) by LTI averaging. 

This means that we can apply the methodology of [l] 
to optimize the averaging filter H(e) in the sense of 
minimizing the time-and ensemble-averaged estima- 
tion error E = (El/W(t) - W(t)ll”). The explicit ex- 
pressions derived in [l] for the optimized H(.) can 
now be used, provided one has prior knowledge of two 
average autocorrelations, viz., 

CB(m) = ( W(t + m) w*(t)) (64 

w(m) = (E{T(t+m)Y*(t)}) (6b) 

where Y(t) = d(t)U*(t)R$, - W(t). We have shown 
in [6] that these average autocorrelations can be ex- 

pressed in terms of c,,(m), Cw(m), and certain 
moments of the stationary input signal u(t), viz., 

CB(m) = tr {cW(m)} (74 

w(m) = c,(m) tr {Crr(m)} +tr { ru(m) G(m)} (7b) 

where 
G(m) = E{U(t) U*(t + m)} UC) 

I’u(m) = E{U(t + m) U*(t + m) V(t) U*(t)} - I (7d) 

In past work, optimized averaging filters have 
been constructed by utilizing prior information about 
Cw(m), c”(m) in applications where such information 
was readily available [1,8,9]. In contrast, we now show 
(in Sec. 3) how to determine this information directly 
from samples of u(t) and d(t) and nothing else. 



3. ESTIMATION OF SYSTEM AND NOISE 
AVERAGE AUTOCORRELATIONS 

The average autocorrelation of any observed signal 
(stationary or not) can be efficiently estimated by con- 
ventional time averaging, under suitable ergodicity as- 
sumptions (see, e.g., [lo]). However, the average auto- 
correlations c”(m) and Cw(m) cannot be directly 
estimated because neither u(t), nor W(t) are di- 
rectly available. Instead, we set up a system of lin- 
ear equations that relates these unknown autocorre- 
lations to cd(m) = (E{d(t + m)d*(t)}), the aver- 

age autocorrelation of the output signal d(t), and to 
Cc(m) = (E{<*(t)<(t + m)}), the average autocorre 
lation of the composite signal t(t) = d(t)U*(t). As 
established in [6], these equations are 

where vet{ .} denotes the vectorization of a matrix by 
columns (see, e.g., [ll]). The matrix Q consists of 
certain second and fourth-order moments of the input 

signal u(t), viz., 

1 1 
&=E 

C(t + m) 63 U(t) C(t + m) CQ U(t) 

where N denotes element by element conjugation and 
@ stands for a Kronecker product (see, e.g., [ll]). As 
mentioned earlier, the elements of Q, as well as the 
average autocorrelations cd(m) and q(m), can all be 
consistently estimated by conventional time averaging. 
This means that the estimation errors associated with 
such estimates vanish asymptotically as the length of 
the data record increases. Consequently, the estimates 

of Cw(m), c,(m), and the resulting averaging fil- 
ter H(.), can all be made as accurate as desired by 
increasing the length of the data record. 

A particular case of special interest is when the input 
signal u(t) is Gaussian, which allows us to collapse 

eq. (7),(8) into the much simpler relation 

w(m) + cB(m) = tr {Cc(m) R$} (94 

w(m) = ca(m) tr {G(m) R$} (9b) 

Thus, we completely avoid the explicit estimation of 
c,(m), Cw(m), and we obtain the autocorrelations 

cg(m), cv(m) needed to construct the optimized av- 
eraging filter H(.) d irectly from Cc(m), Cu(m) and 

Ruu G C&O). Clearly, eqs. (9) offer a significant 
reduction in computational cost, as compared with 
eqs. (7)-(8). 

4. EXAMPLE 

In this section we demonstrate the utility of our 
methodology by applying it to the same periodically- 
time-variant example that was considered in [1,8], 
namely d(l) = w(t)u(t) + v(t), where w(t) = 
60 + 2Ul cos 27rf& with fs = l/5(1 + 6) and 
161 5 b,,, = 0.05. We compare the performance 
of our prior-information-independent (PII) estimator 
with that of several estimators from [1,8], all of which 
exploit the periodicity of w(t) and the constraint 

If0 - I/51 I I/5&M, * The plots in Figs. 3,4 present 
the steady-state error & = (EjG(t) - w(t)12) as a 
function of the relative frequency deviation S: Fig. 3 
is based on theoretical expressions, involving both time 
and ensemble averaging, while Fig. 4 presents the time- 
averaged error from a single sample path obtained by 
simulation [6]. We implement the optimized averaging 
filter in FIR form, and observe that the error & de- 
creases (to zero, in this example) as the length L of the 
FIR filter increases. As is evident from the plots, our 
PI1 estimator (with L = 100) outperforms the other 
techniques. As explained in [1,8], estimators that rely 
on prior information can achieve either low estimation 
error or robustness with respect to perturbations in the 

priors, but never both. In contrast, our PI1 estimator 
is not subject to such a tradeoff: it always achieves the 
theoretical minimum for E as its length L increases, 
and this error is independent of 6. 

E : 
I 

_ ___: ---- -----_- ~-- ------I----------. 
oi 4 -4 4 -2 -I 0 I a 3 4 I 

Figure 3: The theoretical estimation error & vs. the 

relative frequency deviation 6 (in %), for: (i) finely- 
tuned periodic estimator (* * *) ; (ii) optimized har- 
monic estimator (..a.) ; (iii) PI1 estimator of length 
L=lO (-.-), L=40 (-), and L=lOO (--). 



The empirical plots of Fig. 4 essentially coincide 
with the theoretical ones (Fig. 3), except for a slight 
increase in error of the PI1 estimator, which is due to 
finite record length effects. 

Figure 4: The empirical estimation error E vs. the 
relative frequency deviation 6 (in %), for: (i) finely- 
tuned periodic estimator (** *) ; (ii) optimized har- 

monic estimator ( ....) ; (iii) PI1 estimator of order 
L = 10 (-. -), and L = 40 (-). 

5. CONCLUDING REMARKS 

In this research we have demonstrated the feasibil- 
ity of identifying the response of an arbitrarily time- 
variant linear system from samples of its input and 
output signals, without relying on any prior informa- 
tion. Our approach is baaed on moment estimation via 

optimized averaging: as explained in [1,8], optimized 
selection of the required averaging filters relies on avail- 
ability of the two average autocorrelations cg(m) and 

cv(m) of eq. (6). We have shown in [6] that when 
the input signal is stationary such information can be 
determined directly from the observed input and out- 
put signals. This is in contrast to previously proposed 

techniques for time-variant system identification, all of 
which require prior information. 

One important by-product of our computational 
procedure is an estimate of the average autocorrelation 
Cw (m) of the unknown system response W(t). This 
statistical characterization is essential in any method 
for identification of arbitrarily time-variant systems. 
For instance, the extended RLS algorithm of [5] relies 
on explicit prior knowledge of the parameters of an un- 

derlying state space model: our approach should make 
it possible to identify the required parameters directly 
from samples of the input and output signals. 
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