
ASSOCIATIVE ARCHITECTURE FOR FAST DCT

Y. Shain, A. Akerib, R. Adar

Associative Computing Ltd.
9 Hataasiya Street

Raanana, Israel 43 100

ABSTRACT

This paper discusses an associative processor architecture
designed to meet the demands of real-time image processing
applications. In a single chip, this architecture provides
thousands of processors - one for each pixel, in the form of
associative memory. This paper focuses on a generic,
proprietary associative processor architecture and discusses
implcmcnting the discrete cosine transform (DCT) using
processors based on this architecutre. Associative Computing
I.td. has developed a commercial associative chip based on this
architecutre, and while the DCT implementation discussed
rcfcrs to future generations based on this architecture, rcfcrence
is made throughout to the Company’s present processor.

Processors based on our associative architecture can process the
large amounts of data typically required in real-time imaging
applications at a lower cost-performance ratio than conventional
processors. The scalable nature of memory-based processor
architecture allows developers to rapidly increase processing
power without altering the fundamental processor, or system
architecture. The underlying technologies used in the
Company’s present processor can significantly facilitate the
development of associative processing as an alternative to
conventional processing for video applications including
compression and video editing.

1. INTRODUCTION

A host of new processor architectures embodying a number of
process-enhancing principles have enabled image-processing
systems to meet real-time demands for many basic functions.
There are four basic principles for enhancing processor
performance [7]:

1. Data distribution - concurrent processing of multiple data.

2. Task distribution - concurrent execution of tasks.

3. Instruction pipelining - parallel execution of operations.

4. Concurrent data transfer and processing.

These principles have found expression, in one way or another,
in most video signal processors. For example, Intel’s Pentium
with MMX embodies the data distribution principle by featuring
subword parallelism whereby one 32-bit word is operated upon
as four, 8-bit words IS]. This principle finds further expression
in SIMD architectures, such as Texas Instruments Scan-line
Video Processor (SVP) [IO]. A further extension of the data
distribution principle is MIMD architecture, such as Texas

Instruments TMS32OC80 that includes a RISC core, a floating
point processor and four, parallel DSPs [12]. Regrettably, the
utility of Slh4D processors has been limited to low level tasks,
while the more potent MIMD processors are both expensive and
difficult to program.

The task distribution principle is embodied in VLIW
architectures, such as Texas Insturments’ ThJX32OCG201 [9]
(containing eight parallel units: two multipliers and eight
adders) and Chromatics’ Mpact2, the latter comprising a VLIW
core capable of issuing one or two instructions packed into a 72b
word per cycle [6]. Experience has shown it difficult to write
efficient compilers for VIIW processors as the various memory
and hardware addresses must be controlled throughout in order
to execute these instructions. The ability to execute many
instructions in parallel is further dependent on the specific
application, i.e., the application must be of such a nature that its
data and tasks are separable into parallel entities.

Task distribution is also realized in the adaptation of special
instructions that execute conspicuous or prevalent operations,
typically requiring a number of basic operations, in a single
machine cycle. For example, Intel’s Pentium with MMX
instruction set includes an instruction to perform a
multiply/accumulate + saturate operation in a single machine
cycle [6]. This technique provides an application-specific
solution as these instructions are necessarily designed for
particular applications.

Another method of distributing processor tasks, based on the
instruction pipelining principle, is to incroporate a co-processor
into the chip. Most multimedia processors benefit from such an
arrangement. On-chip SRAh4’s and memory caches are also
frequently used to reduce access time to data and instructions.
For example, Phillips’ Trimedia TM-l [4] includes a variable
length decoder unit, an instruction cache and fast interface, in
addition to a VLIW architecture controlling 27 units and the
capacity to execute five instructions in parallel.

Our proposed associative processor architecture is highly cost-
effective and can be feasibly implemented in consumer
electronics in the future. This architecture is an SlMD
architecture that executes instructions on thousands of data
words in parallel. Processors based on this architecture comprise
a one-dimensional array of thousands of memory words made up
of content addressable memory (CAM) cells. These cells are
capable of comparing values stored therein to an on-chip register
and writing the contents of that register to themselves in
parallel. By performing only these two operations, compare and
write, this associative processor can implement a truth table;
hence the processor is fully programmable and can implement
all logical and arithmetic operations.

The processor’s power directly correlates to the density of the
CAM. Memory manufacturing technologies are advancing at a
prodigious rate. Finer manufacturing processes will allow
condensing more processors into a single piece of silicon. Due to
the linear relationship between the processor’s power and the
number of processors per chip, these advances will have a linear
affect on the chip’s performance.

The associative processing core consists of memory words
(CAM cells), hence each word is easily divided into two parallel
functional units: input/output and processing. Using this
dichotomy, our architecture implements the principle of
concurrent data transfer and processing with a minimal
overhead.

Processors based on our architecture are highly modular.
Connecting multiple chips increases the size of the associative
memory and boosts performance linearly. For example, the
Company’s present chip can process up to 2K memory words in
parallel; cascading two chips forms an associative memory twice
as large and can process up to 4K memory words at once. This
connection requires no glue hardware or software.

This paper is organized as follows. In Section 2 we discuss the
associative processing concept. In Section 3 we describe an
associative implementation of the DCT. In Section 4 we discuss
architecture for an associative multimedia chip.

2. ASSOCIATIVE PROCESSING
The classical associative approach pioneered by Foster [3] is a
unique SIMD architecture based on implementing only the most
basic logical operations en masse on data stored in an
associative memory. Basically, the philosophy behind this
approach is that it is advantageous to perfonn complex
operations, such as addition and multiplication, using a number
of simple operations if the simplicity of these operations will
enable the construction of a memory capable of executing them
on large blocks of data. For example, addition of two eight-bit
numbers takes 41 machine cycles using the Company’s present
chip, but esecuting the addition on 2000 pairs of eight-bit
numbers at once reduces the rate to 0.021 cycles per eight-bit
addition.

Foster taught that using only two primitives, compare and write,
it is possible to implement the truth table maxim, “if condition,
then action.” Since all logical and arithmetic operations can be
perfonned by implementing a truth table, the associative
processing approach offered a fully programmable alternative to
conventional processing.

According to the classical associative processing approach, a
word of associative memory is assigned to each pixel and
constitutes a primitive processor. Such a system may be
regarded as an array of simple processors, one for each word in
memory. All bits of all words in the associative memory are
operated upon at the same time, in SIMD fashion. Ruhman &
Scherson [13] introduced a shiA mechanism in the responder
(tag) register to provide communication between processors.
Akerih. liuhman & Ullman [2] elaborated upon this mechanism
to facilitntc operations over a neighborhood of the image, and

adapted this approach to computer vision and VLSI
implementation.

2.1 Basic Structure

Our proposed associative processing array comprises a one-
dimensional array of memory words. For example, the
Company’s present chip features 2K memory words of 128 bits
each, enabling this processor to process an image region of up to
2K pixels at once. Alternative architectures, featuring more
words of shorter length are possible. The chip’s target
applications determine whether it is advantageous to have more
words or longer ones.

Each word is divided into two sections: an I/O section of
configurable size and a processing section. A block diagram of
the associative array can be seen in Fig. 1. The left shaded block
corresponds to the chip’s video I/O section, whereas the right
shaded block corresponds to the remaining bits of each
associative word used for processing.

Pattern

Mask
mw.* .>..l,,>,,> ,,,A.,,. A. :>..<>.&y.y..* :“(~,,~~.,,..,~,,..,.i....>>..> ..,,.v <<A> .~~,:::;~;~~~~~~~.~~.. ,,i ..i_I ,....A...... 5. ..,....,..,,.v .,.. . ..I... .,A I,..,. ..I.., > . ..v.. iii.. > ,,,,,A. ..A. ,....,.v

Bit Slice t

Figure 1. Block diagram of the associative array. The
left shaded block represents a portion of the all memory
words used for I/O, while the right shaded block
represents the remainder of the array used for
processing. Three registers assist in processing: Pattern
and Mask select bit slices and Tag identities memory
words.

The associative processor, as depicted in Figure 1, is parallel by
hit as well as by word. The associative memory implements only
two primitives: compare and write. In a compare operation, a
pattern register is matched against all words of memory
simultaneously, and agreement is indicated by setting the
corresponding tag bit. The comparison is only carried out on bits
indicated by the mask register and only on words indicated by
the tag register. Hence the tag register serves as the source for
words participating in a compare operation at the outset of this

operation, and also serves as a destination for collecting
successful matches at the end of the compare operation.

The \vTite primitive operates in a similar manner. The contents
of the pattern register, in all hits indicted by the mask, are
simultaneously written to all words indicated by the tag. In this
case, the tag serves only as a source

The associative array processes a region of pixels at once. The
size of the region depends on the size of the associative memory.
Although in the original image these pixels may occupy any
area, in the associative memory they are arranged as a linear
scan.

Communication between processors is carried out one bit at a
time by means of a shift primitive implemented in the tag [l]. A
hit slice is copied to the tag (by executing a compare primitive
limited to a single hit slice), and the result is shifted the desired
distance, then copied hack to the associative array (by executing
a \+Titc operation to a bit slice whose initial values were all zero.
Recall that the tag serves as the source for words that participate
in a write operation, hence only words having a corresponding
set bit in the tag will be written to.)

Shift primitives can be implemented to shift various distances in
a single machine cycle. The shift primitives implemented in the
Company’s present chip allow for shifts of 1, 8 and 16 bits in a
single cycle. Communication between distant processors (e.g.,
distances other than I, 8 and 16, in the Company’s present
processor) is done using a plurality of shifts, whereby the total
distance of the shift is determined by the number of shifts and
the size of each shift. Significantly, this architecture enables
communication between any two memory words (processors), as
opposed to other architectures, which allow only communication
between eight neighboring processors. When the distance is
uniform for all pixels in the processed region, communication
between word processors is simultaneous. Most vision
algorithms, including neighborhood operations, are fortuitously
of such a nature and require a uniform communication pattern.

For example, if Y rows of X pixels are input to the associative
memory one row at a time, horizontal neighbors are situated one
on top of the other in the associative memory. Vertical
neighbors, in this case, are situated at a distance of X words
from each other. Communication between horizontal
neighboring pixels for all pixels in the region requires a uniform
shift of one (1); communication between vertical neighboring
pixels requires a uniform shift of X.

Input and output of video data are executed in parallel to
processing using a portion of each associative word as an I/O
buffer. Bach associative word includes a shift register of CAM
cells, which can be configured in increments of eight bits for
either I/O or processing. The configuration is uniform for all
associative words, thus forming an I/O-buffer-array. At each
clock cycle, one word’s shift register can output a processed
word and input a fresh word. In the Company’s present
processor; outputting a processed region and inputting a new
region requires 2K cycles, during which time associative
processing can be carried out. After 2K cycles, the input region
is transferred into the processing portion of the associative

memory via the tag, one bit slice at a time. The two clock cycles
that this takes (compare a bit slice in the I/O-buffer-array: write
that bit slice to a new location) for all 2K words essentially
provide a bus of 1K for this transfer, making the I/O ovcrhcad
negligible. After the input region has been transferred to the
associative memory, a processed region can be transferred from
this memory to the I/O-buffer-array in a similar fashion.

3. ASSOCIATIVE DISCRETE COSINE
TRANSFORM (DCT)

Many image compression methods, including the JPEG, MPEG-
X, and H.26X standards, are based on the discrete cosine
transform (DCT), making it a good example application on
which to demonstrate the power of our associative approach.
The associative DCT implementation for 8x8 samples takes
advantage of the separability of the DCT. Hence, this execution
implements a 1D DC?‘ twice: once along each axis.

In a processor based on our associative architecture
mathematical operations arc carried out by aligning operatives
in a single associative word and implementing a truth table on
respective pairs of bits [8]. For example, eight bit addition is
performed by aligning two eight-bit values in a single
associative word with an additional carry bit in that same word.
Next, all possible combinations are tried (compare) and when a
match is detected, appropriate new values are written to the sum
bit and carry bit @Tite). Pairs of operatives are aligned, one bit
slice at a time, using the shift primitive dcscribcd above.

The associative I>CT implementation we developed is parallel
on two planes: it operates on a plurality of 8x8 blocks at once,
and within each 8x8 block various tasks are carried out in
parallel. Regarding operations on a plurality of blocks at once,
an associative memory of 2K words can contain 32 blocks of
8x8 pixels and operates on all blocks at once; an array of 8K
words can contain four times as many blocks (128).

The DCT operation is basically one of successive multiplication
of the elements of a data vector by those of a coefficient vector
and the summing of the products. Arranging the DCT for a
parallel implementation that takes advantage of the associative
capacity for parallelism within each 8x8 block (i.e., parallel
addition between elements and parallel multiplication between
elements), we arrived at only six additions and two
multiplications. This compares favorably with the both, the
straightforward implementation requiring 5 12 multiply
operations and 448 additions, and the Chen-Smith algorithm
requiring 96 multiply operations and 256 additions, per 8x8 1D
DCT.

Another advantage of the associative architecture is its
flexibility in performing calculations on vectors of various
precisions. Because the associative processor performs thcsc
operations one bit-slice at a time, resources are used efficiently.
For example, addition of two clcven-bit vectors or multiplication
of a 13-hit vector by a 17-bit vector arc carried out on relevant
bit slices only. Our processor architecture is flexible down to a
single bit position; it is not confmcd to operations on bytes,
words or double-words. Hence, the DCT can be calculated in a

minimum of cycles while adhering to the CCITT standard, since
the length of an associative operation (such as addition) is
linearly dependent on the width (in bits) of the operand vectors.
Other processors, such as Intel’s Pentium with MMX, optimized
to work on elements at 8-bit resolutions require twice the
numhcr of cycles to perform g-bit MF’EG decoding as 8-bit
JPEG decoding. Alternatively, these processors forfeit accuracy
for elliciency’s sake.

Assuming an associative core of 16Kx160 CAM cells (feasible
using 0.25 micron technology with a 4 level metal process), a 9-
bit DCT operation takes 32 machine cycles per 8x8 block in a
YUV 4:2:2 image (calculated performance). As a benchmark,
Texas Instruments’ Th4S32OC62x processor requires 226
machine cycles to perform the same operation [111. In addition,
the concurrent input, output and processing enabled by our
processor architecture is translated into very low overhead when
inputting and outputting 8x8 blocks. As a result, a processor
based on our architecture operates at peak performance while
other processors cannot reach their peak performance levels in
real-time processing due to I/O constraints.

4. ONE-CHIP VIDEO PROCESSOR

ln the preceding section we described an associative
implementation of the DCT. However, most of the fundamental
operations that constitute the standard compression algorithms
can he implemented in parallel. We believe that associative
processing can efficiently perform the majority of operations
required by the IS0 and ITU compression standards.

Future generations of associative processors based on our
proprietary architecture that feature dense arrays of CAM will
perform all of the following operations at a greater efticicncy
than conventional processor architectures:

l Quantization

. Zigzag reordering

. Zero run length calculation

. I Iufinan coding

. Motion vector calculation based on a current image and a
reference image

. Calculations associated with hit-rate control and gathering
statistics on the nature of each block in an image in order to
improve the quality of the compression

For example, zigzag reordering of 12-bit samples takes 953
machine cycles per region. For a region of 8K pixels this
performance translates into less than 0.125 cycles per pixel.

Numerous processor architectures take advantage of data
patterns in order to accelerate execution of functions. For
example, some processors offer a fast inverse DCT by assuming
that most of the block’s values are zero. The same processors
arc much slower when performing a forward DC?‘. By contrast,
an associative processor based on our architecture makes no
assumptions regarding the data processed, and as a result,
forward and inverse DCT operations enjoy the same levels of
efficiency.

The only operations not efficiently performed associatively, and
which take only a small amount of overall processing time, arc
variable length decoding (at the decoding stage), and arranging
the bit stream and adding headers (at the compression stage).
All of these operations can bc performed by auxiliary units that
can be added to the associative core without having a great
impact on the die size. In addition, these operations can be
pipelined together with operations in the associative core.

Our associative processor architecture is not a collage of units
customized for compression featuring a limited instruction
vocabulary. Rather, it descrihcs a fully programmable unit
capable of a wide variety of generic operations, in addition to
being well suited for video compression. While DSP
architectures suggest providing additional units to handle video
processing tasks, an associative core can perform a variety of
video-related tasks in addition to compression, such as
improving image quality, video editing, graphics, as well as
non-standard compression schemes, e.g., wavelets.

111

121

131

141

[51

I61

171

181

191

5. REFERENCES

Avidan Akcrib and Rutie Adar, “Associative Approach to
Real Time Color, Motion and Stereo Vision”. IElX
International ConJerence on Acoustics, Speech, and Signal
Processing. Detroit, May 1995.
Avidan Akerih, S. Ruhman. and S. Ullman, “Real Time
Associative Vision Machine”, Aritficial Intelligence and
Computer Vision, Elsevier Science Publishers B.V. (North-
Ilolland), 1991. Pp. 441-453.
Foster, CC. “Content Addressable Parallel Processors”.
Van Nostrand Rignhold Co., 1976, chs. 2 & 5.
Gerrit Slavenburg, Selliah Rathnam, and I-Ienk Dijkstra,
“The Trimedia TM- 1 PC1 VLIW Media Processor”,
IfotChips8 Symposium, Berkcly CA, August 1996.

h~~~~!!in~~~ad...~e~~:~~~~~!~Y~-~~.~~~~~~~~~~!~~~~
Intel, “Pentium Processor with MMX Technology”
datashect. June 1997.
John A. Watlington, “Video Signal Processors”,Video &
Graphics Processors: 1997”, MIT Media Laboratory, May
11, 1997.
httr,://wad.~~~w.media.mit.ed~pcople/~vad/vs~~nodel .html
P. Pirsch, “Programmable Signal Processors for Video
Coding”, Seminar on Low Bit Rate Video Coding, Tel Aviv
Israel, September 1997.
R. Adar, A. Akerib, “Associative Architecture for Image
Processing”. SPIE Conference on Parallel and Distributed
Methods for Image Processing. San Diego, July 1997.
Texas Insturments TMX32OC620 1 Digital Signal
Processor, Product Preview, June 1997.

[IO] Texas Instruments SVP for Digital Video Signal
Processing, Product Overview, 1995.

[1 I] Texas Instruments Th4S32OC62x Assembly Benchmarks
htt~://www.ti.com/sc/docs/dsps/products/c6xfbenchmk.htm
#graphics

[121 Texas Instruments TMS320C80 Data Sheet, 1996.
1131 S. Ruhman, I. Schcrson, “Associative Processor for

Tomographic Image Reconstruction”. Proc. Medcomp 82
pp. 353-358.

