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ABSTRACT 

This paper discusses an associative processor architecture 
designed to meet the demands of real-time image processing 
applications. In a single chip, this architecture provides 
thousands of processors - one for each pixel, in the form of 
associative memory. This paper focuses on a generic, 
proprietary associative processor architecture and discusses 
implcmcnting the discrete cosine transform (DCT) using 
processors based on this architecutre. Associative Computing 
I.td. has developed a commercial associative chip based on this 
architecutre, and while the DCT implementation discussed 
rcfcrs to future generations based on this architecture, rcfcrence 
is made throughout to the Company’s present processor. 

Processors based on our associative architecture can process the 
large amounts of data typically required in real-time imaging 
applications at a lower cost-performance ratio than conventional 
processors. The scalable nature of memory-based processor 
architecture allows developers to rapidly increase processing 
power without altering the fundamental processor, or system 
architecture. The underlying technologies used in the 
Company’s present processor can significantly facilitate the 
development of associative processing as an alternative to 
conventional processing for video applications including 
compression and video editing. 

1. INTRODUCTION 

A host of new processor architectures embodying a number of 
process-enhancing principles have enabled image-processing 
systems to meet real-time demands for many basic functions. 
There are four basic principles for enhancing processor 
performance [7]: 

1. Data distribution - concurrent processing of multiple data. 

2. Task distribution - concurrent execution of tasks. 

3. Instruction pipelining - parallel execution of operations. 

4. Concurrent data transfer and processing. 

These principles have found expression, in one way or another, 
in most video signal processors. For example, Intel’s Pentium 
with MMX embodies the data distribution principle by featuring 
subword parallelism whereby one 32-bit word is operated upon 
as four, 8-bit words IS]. This principle finds further expression 
in SIMD architectures, such as Texas Instruments Scan-line 
Video Processor (SVP) [IO]. A further extension of the data 
distribution principle is MIMD architecture, such as Texas 

Instruments TMS32OC80 that includes a RISC core, a floating 
point processor and four, parallel DSPs [12]. Regrettably, the 
utility of Slh4D processors has been limited to low level tasks, 
while the more potent MIMD processors are both expensive and 
difficult to program. 

The task distribution principle is embodied in VLIW 
architectures, such as Texas Insturments’ ThJX32OCG201 [9] 
(containing eight parallel units: two multipliers and eight 
adders) and Chromatics’ Mpact2, the latter comprising a VLIW 
core capable of issuing one or two instructions packed into a 72b 
word per cycle [6]. Experience has shown it difficult to write 
efficient compilers for VIIW processors as the various memory 
and hardware addresses must be controlled throughout in order 
to execute these instructions. The ability to execute many 
instructions in parallel is further dependent on the specific 
application, i.e., the application must be of such a nature that its 
data and tasks are separable into parallel entities. 

Task distribution is also realized in the adaptation of special 
instructions that execute conspicuous or prevalent operations, 
typically requiring a number of basic operations, in a single 
machine cycle. For example, Intel’s Pentium with MMX 
instruction set includes an instruction to perform a 
multiply/accumulate + saturate operation in a single machine 
cycle [6]. This technique provides an application-specific 
solution as these instructions are necessarily designed for 
particular applications. 

Another method of distributing processor tasks, based on the 
instruction pipelining principle, is to incroporate a co-processor 
into the chip. Most multimedia processors benefit from such an 
arrangement. On-chip SRAh4’s and memory caches are also 
frequently used to reduce access time to data and instructions. 
For example, Phillips’ Trimedia TM-l [4] includes a variable 
length decoder unit, an instruction cache and fast interface, in 
addition to a VLIW architecture controlling 27 units and the 
capacity to execute five instructions in parallel. 

Our proposed associative processor architecture is highly cost- 
effective and can be feasibly implemented in consumer 
electronics in the future. This architecture is an SlMD 
architecture that executes instructions on thousands of data 
words in parallel. Processors based on this architecture comprise 
a one-dimensional array of thousands of memory words made up 
of content addressable memory (CAM) cells. These cells are 
capable of comparing values stored therein to an on-chip register 
and writing the contents of that register to themselves in 
parallel. By performing only these two operations, compare and 
write, this associative processor can implement a truth table; 
hence the processor is fully programmable and can implement 
all logical and arithmetic operations. 



The processor’s power directly correlates to the density of the 
CAM. Memory manufacturing technologies are advancing at a 
prodigious rate. Finer manufacturing processes will allow 
condensing more processors into a single piece of silicon. Due to 
the linear relationship between the processor’s power and the 
number of processors per chip, these advances will have a linear 
affect on the chip’s performance. 

The associative processing core consists of memory words 
(CAM cells), hence each word is easily divided into two parallel 
functional units: input/output and processing. Using this 
dichotomy, our architecture implements the principle of 
concurrent data transfer and processing with a minimal 
overhead. 

Processors based on our architecture are highly modular. 
Connecting multiple chips increases the size of the associative 
memory and boosts performance linearly. For example, the 
Company’s present chip can process up to 2K memory words in 
parallel; cascading two chips forms an associative memory twice 
as large and can process up to 4K memory words at once. This 
connection requires no glue hardware or software. 

This paper is organized as follows. In Section 2 we discuss the 
associative processing concept. In Section 3 we describe an 
associative implementation of the DCT. In Section 4 we discuss 
architecture for an associative multimedia chip. 

2. ASSOCIATIVE PROCESSING 
The classical associative approach pioneered by Foster [3] is a 
unique SIMD architecture based on implementing only the most 
basic logical operations en masse on data stored in an 
associative memory. Basically, the philosophy behind this 
approach is that it is advantageous to perfonn complex 
operations, such as addition and multiplication, using a number 
of simple operations if the simplicity of these operations will 
enable the construction of a memory capable of executing them 
on large blocks of data. For example, addition of two eight-bit 
numbers takes 41 machine cycles using the Company’s present 
chip, but esecuting the addition on 2000 pairs of eight-bit 
numbers at once reduces the rate to 0.021 cycles per eight-bit 
addition. 

Foster taught that using only two primitives, compare and write, 
it is possible to implement the truth table maxim, “if condition, 
then action.” Since all logical and arithmetic operations can be 
perfonned by implementing a truth table, the associative 
processing approach offered a fully programmable alternative to 
conventional processing. 

According to the classical associative processing approach, a 
word of associative memory is assigned to each pixel and 
constitutes a primitive processor. Such a system may be 
regarded as an array of simple processors, one for each word in 
memory. All bits of all words in the associative memory are 
operated upon at the same time, in SIMD fashion. Ruhman & 
Scherson [13] introduced a shiA mechanism in the responder 
(tag) register to provide communication between processors. 
Akerih. liuhman & Ullman [2] elaborated upon this mechanism 
to facilitntc operations over a neighborhood of the image, and 

adapted this approach to computer vision and VLSI 
implementation. 

2.1 Basic Structure 

Our proposed associative processing array comprises a one- 
dimensional array of memory words. For example, the 
Company’s present chip features 2K memory words of 128 bits 
each, enabling this processor to process an image region of up to 
2K pixels at once. Alternative architectures, featuring more 
words of shorter length are possible. The chip’s target 
applications determine whether it is advantageous to have more 
words or longer ones. 

Each word is divided into two sections: an I/O section of 
configurable size and a processing section. A block diagram of 
the associative array can be seen in Fig. 1. The left shaded block 
corresponds to the chip’s video I/O section, whereas the right 
shaded block corresponds to the remaining bits of each 
associative word used for processing. 
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Figure 1. Block diagram of the associative array. The 
left shaded block represents a portion of the all memory 
words used for I/O, while the right shaded block 
represents the remainder of the array used for 
processing. Three registers assist in processing: Pattern 
and Mask select bit slices and Tag identities memory 
words. 

The associative processor, as depicted in Figure 1, is parallel by 
hit as well as by word. The associative memory implements only 
two primitives: compare and write. In a compare operation, a 
pattern register is matched against all words of memory 
simultaneously, and agreement is indicated by setting the 
corresponding tag bit. The comparison is only carried out on bits 
indicated by the mask register and only on words indicated by 
the tag register. Hence the tag register serves as the source for 
words participating in a compare operation at the outset of this 



operation, and also serves as a destination for collecting 
successful matches at the end of the compare operation. 

The \vTite primitive operates in a similar manner. The contents 
of the pattern register, in all hits indicted by the mask, are 
simultaneously written to all words indicated by the tag. In this 
case, the tag serves only as a source 

The associative array processes a region of pixels at once. The 
size of the region depends on the size of the associative memory. 
Although in the original image these pixels may occupy any 
area, in the associative memory they are arranged as a linear 
scan. 

Communication between processors is carried out one bit at a 
time by means of a shift primitive implemented in the tag [l]. A 
hit slice is copied to the tag (by executing a compare primitive 
limited to a single hit slice), and the result is shifted the desired 
distance, then copied hack to the associative array (by executing 
a \+Titc operation to a bit slice whose initial values were all zero. 
Recall that the tag serves as the source for words that participate 
in a write operation, hence only words having a corresponding 
set bit in the tag will be written to.) 

Shift primitives can be implemented to shift various distances in 
a single machine cycle. The shift primitives implemented in the 
Company’s present chip allow for shifts of 1, 8 and 16 bits in a 
single cycle. Communication between distant processors (e.g., 
distances other than I, 8 and 16, in the Company’s present 
processor) is done using a plurality of shifts, whereby the total 
distance of the shift is determined by the number of shifts and 
the size of each shift. Significantly, this architecture enables 
communication between any two memory words (processors), as 
opposed to other architectures, which allow only communication 
between eight neighboring processors. When the distance is 
uniform for all pixels in the processed region, communication 
between word processors is simultaneous. Most vision 
algorithms, including neighborhood operations, are fortuitously 
of such a nature and require a uniform communication pattern. 

For example, if Y rows of X pixels are input to the associative 
memory one row at a time, horizontal neighbors are situated one 
on top of the other in the associative memory. Vertical 
neighbors, in this case, are situated at a distance of X words 
from each other. Communication between horizontal 
neighboring pixels for all pixels in the region requires a uniform 
shift of one (1); communication between vertical neighboring 
pixels requires a uniform shift of X. 

Input and output of video data are executed in parallel to 
processing using a portion of each associative word as an I/O 
buffer. Bach associative word includes a shift register of CAM 
cells, which can be configured in increments of eight bits for 
either I/O or processing. The configuration is uniform for all 
associative words, thus forming an I/O-buffer-array. At each 
clock cycle, one word’s shift register can output a processed 
word and input a fresh word. In the Company’s present 
processor; outputting a processed region and inputting a new 
region requires 2K cycles, during which time associative 
processing can be carried out. After 2K cycles, the input region 
is transferred into the processing portion of the associative 

memory via the tag, one bit slice at a time. The two clock cycles 
that this takes (compare a bit slice in the I/O-buffer-array: write 
that bit slice to a new location) for all 2K words essentially 
provide a bus of 1K for this transfer, making the I/O ovcrhcad 
negligible. After the input region has been transferred to the 
associative memory, a processed region can be transferred from 
this memory to the I/O-buffer-array in a similar fashion. 

3. ASSOCIATIVE DISCRETE COSINE 
TRANSFORM (DCT) 

Many image compression methods, including the JPEG, MPEG- 
X, and H.26X standards, are based on the discrete cosine 
transform (DCT), making it a good example application on 
which to demonstrate the power of our associative approach. 
The associative DCT implementation for 8x8 samples takes 
advantage of the separability of the DCT. Hence, this execution 
implements a 1D DC?‘ twice: once along each axis. 

In a processor based on our associative architecture 
mathematical operations arc carried out by aligning operatives 
in a single associative word and implementing a truth table on 
respective pairs of bits [8]. For example, eight bit addition is 
performed by aligning two eight-bit values in a single 
associative word with an additional carry bit in that same word. 
Next, all possible combinations are tried (compare) and when a 
match is detected, appropriate new values are written to the sum 
bit and carry bit @Tite). Pairs of operatives are aligned, one bit 
slice at a time, using the shift primitive dcscribcd above. 

The associative I>CT implementation we developed is parallel 
on two planes: it operates on a plurality of 8x8 blocks at once, 
and within each 8x8 block various tasks are carried out in 
parallel. Regarding operations on a plurality of blocks at once, 
an associative memory of 2K words can contain 32 blocks of 
8x8 pixels and operates on all blocks at once; an array of 8K 
words can contain four times as many blocks (128). 

The DCT operation is basically one of successive multiplication 
of the elements of a data vector by those of a coefficient vector 
and the summing of the products. Arranging the DCT for a 
parallel implementation that takes advantage of the associative 
capacity for parallelism within each 8x8 block (i.e., parallel 
addition between elements and parallel multiplication between 
elements), we arrived at only six additions and two 
multiplications. This compares favorably with the both, the 
straightforward implementation requiring 5 12 multiply 
operations and 448 additions, and the Chen-Smith algorithm 
requiring 96 multiply operations and 256 additions, per 8x8 1D 
DCT. 

Another advantage of the associative architecture is its 
flexibility in performing calculations on vectors of various 
precisions. Because the associative processor performs thcsc 
operations one bit-slice at a time, resources are used efficiently. 
For example, addition of two clcven-bit vectors or multiplication 
of a 13-hit vector by a 17-bit vector arc carried out on relevant 
bit slices only. Our processor architecture is flexible down to a 
single bit position; it is not confmcd to operations on bytes, 
words or double-words. Hence, the DCT can be calculated in a 



minimum of cycles while adhering to the CCITT standard, since 
the length of an associative operation (such as addition) is 
linearly dependent on the width (in bits) of the operand vectors. 
Other processors, such as Intel’s Pentium with MMX, optimized 
to work on elements at 8-bit resolutions require twice the 
numhcr of cycles to perform g-bit MF’EG decoding as 8-bit 
JPEG decoding. Alternatively, these processors forfeit accuracy 
for elliciency’s sake. 

Assuming an associative core of 16Kx160 CAM cells (feasible 
using 0.25 micron technology with a 4 level metal process), a 9- 
bit DCT operation takes 32 machine cycles per 8x8 block in a 
YUV 4:2:2 image (calculated performance). As a benchmark, 
Texas Instruments’ Th4S32OC62x processor requires 226 
machine cycles to perform the same operation [ 111. In addition, 
the concurrent input, output and processing enabled by our 
processor architecture is translated into very low overhead when 
inputting and outputting 8x8 blocks. As a result, a processor 
based on our architecture operates at peak performance while 
other processors cannot reach their peak performance levels in 
real-time processing due to I/O constraints. 

4. ONE-CHIP VIDEO PROCESSOR 

ln the preceding section we described an associative 
implementation of the DCT. However, most of the fundamental 
operations that constitute the standard compression algorithms 
can he implemented in parallel. We believe that associative 
processing can efficiently perform the majority of operations 
required by the IS0 and ITU compression standards. 

Future generations of associative processors based on our 
proprietary architecture that feature dense arrays of CAM will 
perform all of the following operations at a greater efticicncy 
than conventional processor architectures: 

l Quantization 

. Zigzag reordering 

. Zero run length calculation 

. I Iufinan coding 

. Motion vector calculation based on a current image and a 
reference image 

. Calculations associated with hit-rate control and gathering 
statistics on the nature of each block in an image in order to 
improve the quality of the compression 

For example, zigzag reordering of 12-bit samples takes 953 
machine cycles per region. For a region of 8K pixels this 
performance translates into less than 0.125 cycles per pixel. 

Numerous processor architectures take advantage of data 
patterns in order to accelerate execution of functions. For 
example, some processors offer a fast inverse DCT by assuming 
that most of the block’s values are zero. The same processors 
arc much slower when performing a forward DC?‘. By contrast, 
an associative processor based on our architecture makes no 
assumptions regarding the data processed, and as a result, 
forward and inverse DCT operations enjoy the same levels of 
efficiency. 

The only operations not efficiently performed associatively, and 
which take only a small amount of overall processing time, arc 
variable length decoding (at the decoding stage), and arranging 
the bit stream and adding headers (at the compression stage). 
All of these operations can bc performed by auxiliary units that 
can be added to the associative core without having a great 
impact on the die size. In addition, these operations can be 
pipelined together with operations in the associative core. 

Our associative processor architecture is not a collage of units 
customized for compression featuring a limited instruction 
vocabulary. Rather, it descrihcs a fully programmable unit 
capable of a wide variety of generic operations, in addition to 
being well suited for video compression. While DSP 
architectures suggest providing additional units to handle video 
processing tasks, an associative core can perform a variety of 
video-related tasks in addition to compression, such as 
improving image quality, video editing, graphics, as well as 
non-standard compression schemes, e.g., wavelets. 
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