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ABSTRACT 

We focus on the feasibility of the source separation in the 
frequency domain. First, it is linked with the convergence 
speed towards gaussianity of signals after L-point discrete 
Fourier Transform. We test here a distance to gaussianity 
thanks to the spectral kurtosis. We analyse the influence of L, 
of the duration of the source tricorrelations and of a non linear 
filtering. We mainly develop the case of QARMA processes. 
The second point consists in the reconstruction of the spectra 
of the estimated sources from the signals identified at each 
frequency bin. Indeed, the source associated to the ith 
identified signal is not necessarily the same from one 
frequency bin to another. The algorithm efficiency is then 
illustrated on QARMA processes, including the procedures of 
separation and reconstruction. 

1. INTRODUCTION 

The blind source separation issue has recently but largely been 
investigated as it arises in many fields (noise reduction, radar 
and sonar processing, speech enhancement, separation of 
rotating machine noises, localization in array processing, 
. ..). Whatever its application, it consists in recovering the 
signals emitted by p sources S(t) from M observed linear 
mixtures L(t) of these sources. In a general context of source 
separation, the only three assumptions are the non- 
gaussianity of the source signals, their mutual independence 
and the linearity and stationarity of the propagation. 
Since ten years, many solutions have been proposed which 
test different measurements of the statistical independence. 
They are based on the use of fourth-order moments or 
cumulants, nonlinear functions, contrast functions or the 
information maximization principle [l] [2] [3] [4] [5] [6]. The 
linear filters (which characterize the propagation from the 
sources to the sensors) can be estimated using adaptive or 
nonadaptive algorithms minimizing or looking for zeros of 
different independence criteria. Some procedures are also based 
on the maximum likelihood principle [4] [6]. 
Most of these works reconstruct the source signals from 
instantaneous mixtures. In a general case of convolutive 
mixtures, the problem has been treated with the help of 
adaptive algorithms in the time domain [3]. Certain 
symmetrical fourth-order cumulants of the estimated sources 
are proposed to be canceled. Yet, it is proved that it is a 
sufficient condition to separate the sources only under the 
hypothesis of independent, identically distributed (i.i.d) 
processes with the same sign of kurtosis. In many 
applications, the statistical properties of the source signals 
are far from the previous hypotheses which achieve the 
separation. Besides, several problems (spurious solutions, 

local minima, influence of the initialization and low 
convergence speed) prevent from using these methods, 
The source separation problem may also be treated in the 
frequency domain thanks to the use of multispectra [13]. In 
this approach, the general problem of convolutive mixtures 
comes to a problem of instantaneous mixtures of narrow-band 
sources in each frequency band. The mixtures in each band are 
then separated using one of the previous methods for complex 
mixtures. 
We propose in this paper a study of the source separation 
problem to convolutive mixtures of wide-band sources in the 
frequency domain. We mainly develop two points. The 
feasibility is linked with the convergence speed towards 
gaussianity of the signals after L-point discrete Fourier 
Transform. In $3, we test a distance to gaussianity thanks to 
the spectral kurtosis. We analyse the influence of L, of the 
duration of the source tricorrelations and of a non linear 
filtering. We give then a lower bound for the spectral kurtosis, 
available for the whole frequency band. After that, we mainly 
develop the case of QARMA processes in 93.4. 

The second point consists in the reconstruction of the 
estimated sources spectra from the signals identified at each 
frequency bin, as the source associated to the ith identified 
signal is not necessarily the same from one frequency bin to 
another. We discuss this point in $4 and propose an original 
method to solve the problem. The algorithm efficiency is 
then illustrated on QARMA processes, including the 
procedures of separation and reconstruction. 

2. MODELIZATION OF THE PROBLEM 

In a general blind source separation problem, the observed M- 
dimensional data vector I(t) may be represented in frequency- 
domain by an instantaneous complex mixture for each 
frequency bin n, which leads to the following model: 

(1) &i(n) = b(n) Si(n) + vi(n) n=O, . . . . L-l 

where g(n) is the L-point Discrete Fourier Transform (DFT) 

of the ith data block of the observation I(t). Si(n) represents 

the DFI of the ith data block of the p-dimensional data vector 
of the sources S(t). b(n) is a matrix (1M.p) which characterizes 

the linear propagation from sources to sensors and vi(n) 
represents an additive M-dimensional gaussian noise. The 
problem consists first in identifying the matrix L(n). After a 

singular value decomposition, the mixing matrix b(n) is 

expressed as the product of three matrices. 

(2) 2(n) = &I g(n) E:(n) 

where E(n) and q(n) are two (M.M) and (p.p) unitary 

matrices. g(n) is a (M.p) diagonal matrix. The two matrices 



E(n) and g(n) are identified thanks to second-order statistic 

criteria. They respectively contain the eigenvectors and the 
eigenvalues of the spectral matrix of the observation B(n). 

After projection of the observation vector g(n) in the signal 
subspace (which is spanned by the eigenvectors associated to 
the dominant eigenvalues) and normalization, the components 
of the p-dimensional vector, noted s(n) , are uncorrelated and 
normalized. They are relied to the components of the 
normalized source vector, noted s’(t), by: 

(3) g(n) = Il.(n) xi(n) 

where xi(n) is the DFI of S’(t). 

II(n) may be expressed as a product of Givens rotations and 

estimated thanks to fourth-order criteria, by testing different 
measurements of the statistical independence, as presented in 
91. 

compute then a lower bound for it, which is available in the 
whole frequency-band. From (4), we remark that the spectral 
kurtosis in unchanged by linear filtering. We can then 
suppose that cum(Si(n),Si(n)*) is constant. Now suppose that 
the duration of the tricorrelation of s(t) is bounded and equal to 
T. After computations, the numerator of the K(Si(n)) is then 
equal to : (7) 

T-l T-l T-l 
N(n)=( C x 11 L-lmax(k,l,m,0)1- 

k=-T+l I=-T+l m=-T+l 

~min(k.l,m.O)~I.CS4(k,l,m)exp( 
-2njn( k - I + m) 

1) 
L 

Denote E : (8) 
L-l L-l-i L-l L-l-i 

E=IC c CS4(k,I,m)- x C Cs4(kLm)l 
i=O k,l,m=-i i=O k,l,m=-i 

3 STUDY OF THE SPECTRAL (k-l+m=O) 

KURTOSIS with Ikl, III, Iml <T 

From (8) it can be proved that (IN(n)12-a2) is always positive. 
Consequently, IK(S(n))l admits the lower bound 

(~f(L~Cs2(0)~), independent of the frequency bin n. The lower 
bound of the spectral kurtosis depends both on T and on the 
shape of the source tricorrelation. It also shows the distinct 
influence of the tricorrelation terms for (k-l+m=O) and (k- 
I+m#O). 

3.1 Computation of a lower bound 

This part of the paper is devoted to the convergence speed 
towards gaussianity of the signals after L-point discrete 
Fourier Transform. As it has been shown in 52, the source 
separation methods lay on the additional information 
provided by fourth-order statistics. This information only 
exists under the hypothesis of non gaussian sources. 
Whatever the chosen method, the variance of the estimator of 

matrix E(n) is inversely proportional to the kurtosis of the 

sources [8]. In a similar way, in frequency domain, we study 
the distance of the DFT to gaussianity thanks to the spectral 
kurtosis which is defined as a section of the general 
trispectrum of the normalized sources. Let K(Si(n)) be the 
kurtosis of Si(n), defined by : 

(4) 
K(Si(n))= cum(Si(n>,Si(n)*,Si(n),Si(n>*) 

cum(Si( n), Si(n)*> 
where cum represents the cumulants of second and fourth orders 
and * the complex conjugate. 
In [9], a generalized central limit theorem is presented under a 
sufficient condition of convergence relative to the duration of 
the multicorrelation of the sources. Suppose s(t) is a strictly 
stationary process, all of whose moments exist, we define its 
L-point DFf by : 

L-l 
(5) S(n) = Cs(m)exp( 

-2xjnm 
-1 

m=O L 

CSk(q,...> uk-1 ) represents the source multicorrelation of 

order k. If the span of dependence of s(t) is small enough that : 

(6) -+fi- 

U1’...‘UkmI 

ICSk(Ul ,..., Uk-l)l<+=‘,k=2 ,..., +- 

then the variables S(n) are asymptotically independent and 
have asymptotically a complex normal distribution [9], with 
zero mean and variance (L fs(n)), when L tends towards 
infinity. fs(n) represents the power spectrum of s(t). 
For finite values of L, the convergence speed is linked with 
the duration of the source multicorrelations. We test here a 
distance to gaussianity thanks to the spectral kurtosis. We 

(k-l+m#O) 

This lower bound is very useful to know the feasibility of the 
source separation on the whole frequency band. In several 
application, like active sonar environment, the sources (or at 
least one of the sources) are controlled. This lower bound 
makes it possible to test the spectral kurtosis on the whole 
frequency band. We show on some examples $3.4 that it is 
able to construct signals such that the spectral kurtosis value 
is significant. We analyse in particular the influence of 
nonlinear filtering on the spectral kurtosis value in $3.2, 
including for example QARMA processes ($3.4). 

3.2 Influence of nonlinear filtering on the 
spectral kurtosis 

Suppose Yi(f), the Fourier transform of the data block [y(i), 

. . . . y(i+L-I)] of continuous frequency f, where y(i) is a 
nonlinear filtering of s(i). Denote K(Yi(f)), the spectral 
kurtosis of Yi(f). We show that K(Yi(f)) cannot be strictly 
equal to K(Si(f)) if y(t) is strictly a nonlinear filtering of s(t). 
A general model for IYi(f)12 is given by : 

(9) IYi(f)12 =lH(f)12 lSi(f)12+Zi(f) 
where Zi(f) is a real stationary random sequence of time index 

i, correlated with Xi(f). IH( lSi(f)12 represents the linear 
part of the filtering between Si(f) and Yi(f). We assume that 

E{Zi(f)(Si(f)[2} IS non zero. K(Yi(f)) is equal to K(Si(D) if 

and only if it exists positive roots of equation (IO) : 

lH(f)14 + 2)-Uf)12 
E{ Zi(f)lSi(f)l’} 

E{lSi(f)14} + 



More precisely, the identified matrix, noted a(n) , is relied 

to II(n) by : 

It can be proved from (IO) that the roots are strictly positive. 
Consequently, if y(t) is strictly a nonlinear filtering of s(t) 
(H(f)=O). K(Yi(n)) increases or decreases versus K(Si(f)) in the 
whole frequency band. It increases or decreases according to 
the type of nonlinearity. It depends if the kurtosis of s(t) is 
inferior (or superior) to the kurtosis of y(t). 
The difference between K(Si(1-J) and K(Yi(f)) is necessarily 
linked to the shapes of the autocorrelations and the 
tricorrelations of y(t) and s(t). It can be approximated by the 
lower bounds (8). 

3.3. Application to QARMA processes 

QARIMA processes are obtained by squaring ARMA processes. 
They are generated as described in (11): 

(11) zb)=y(m)2-J3y(m)21 
where y(m) is an ARMA process issued from x(m). z(m) is a 
strictly nonlinear filtering of x(m). As explained before, 
K(Z(n)) increases versus K(X(n)) if and only if K(z) is superior 
to K(x). Now suppose that x(m) is a gaussian process. The 
above condition is necessarily verified. 
After some computations, we obtain that : 

(12) CZ4(k,l,m)=l6[T(k)T(l)I(k-m)T(l-m)+ 

r(k)r(m)r(k-l)r(l-m)+r(l)r(m)r(k-l)r(k-m)] 
(13) CZ2(k)=21-(k)2 

where T(k)=E(y(t)y(t-k)). Let y(m) be an AR1 gaussian 

process. Denote its autocorrelation T(k) : 

(14) r(k)=alkl r(O) with 0 < a < 1 
From (12) (13) (14). we can prove after some computations 
that K(Z(n)) increases with the coefficient a. We show in 

figure 1 the spectral kurtosis for two values of a (0.8;0.9) 
(L=64). ,, 

Fig. 1 : Spectral Kurtosis for (a =0.8 and a =0.9) 

We verify that K(Z(n)) is correctly increasing with a. The 
values of K(Z(n)) make it possible to apply source separation 
methods on such signals. Experimental results on this type of 
signals are shown in $5, including the procedures of 
separation and reconstruction 

4. RECONSTRUCTION OF THE 
SOURCE SPECTRA 

The crucial point consists in the reconstruction of the time 
sources Sk(t) for (k=l, . . . . p). After identification of the 
matrix g(n) with fourth-order criteria, p independent 

components of Si(n) are extracted in each frequency bin n. 

(15) Q(n) = E(n)p(n)$n) 
where p(n) is a (p.p) permutation matrix and g(n) is a 

diagonal one. Due to the existence of this permutation matrix 
at each bin n, and since the methods independently treat each 
frequency bin, the kth identified component of Si(n) is not 
necessarily associated to the same time source Sk(t), from one 
frequency bin to another. 
In order to re-establish the continuity of the source spectra, 
several ideas have been investigated. The first one consists in 
examining the statistic relationship between the different 
estimated sources from one frequency bin to another. 
However, the correlation and the tricorrelation between two 
adjacent frequency bins of the same source depend on the 
shape of their spectral density and trispectrum [IO]. It is 
sometimes impossible to define an absolute threshold from 
which the frequency components of two estimated signals 
would be attributed to the same temporal source or to two 
different sources. This remark shows the interest of going 
back on a temporal expression of the sources. 
The proposed method aims first at recovering the statistic 
relationship between the estimated sources at one frequency- 
bin n, Si(n), and the temporal sources S(t). 
Recall the expression of the DFI of the kth component of 
Si(n), Si(n,k), on the ith data block : 

L-l 
(16) Si(n, k) = c sk(i + l)exp(-2njn I) 

l=O L 
Recall the expression of the DFI of the kth component of 
Si(n), on the (i+l)th data block, delayed for one sample : 

L-l 
(17) Si + l(n, k) = z sk(i + I+ l)exp(-2xjnl) 

l=O L 
We easily deduce from the two expressions (16) (17) a relation 
between an estimated source in frequency domain Si(n,k), at 
data blocks i and (i+l), and the associated temporal source 
Sk(t): (18) 

Si + l(n,k)exp(-2nj:)-Si(n,k) = sk(i +L)-Sk(i) 

which directly ensues from the expression of the DFT. 
Consequently, it exists a specific MA filtering of Si(n) for 
each frequency bin n which is relied to a function of the time 
sources (S(t) - S(t-L)). 
Suppose now that the components of index i0, Si(n,io), and 
j0, Si(n+ljo), are associated to the same time source sl(t). 
The previous MA filtering of Si(n,io). H(Si(n,io)), and of 
Si(n+ljo), H(Si(n+ljo)), will be equal to the same quantity 
(sl(i+L-1)-sl(i-1)). whatever the treated frequency bin n. 
Consequently, their coherence will be non zero and equal to 
one. On the contrary, if the two components are not 
associated to the same time source, H(Si(n,io)) H(Si(n+l,jo)), 
will be uncorrelated. Their coherence will then be zero. AS a 
conclusion, a criterion based on the second order moments 
may be used to associate the L frequency components of sl(t): 

(l9)E{H(Si(n,k)).H(Si(n+l,j))*}#Ofor(k,j)=(l,1) 

=2 [rsi(o) - rsi(L)I 
where Tsl(k) represents the autocorrelation of the source 
sl(t). 



(20)E(H(Si(n,k)).H(Si(n +l.j))*) = Ofor(k.j)# (1,l) 
This criterion is ambiguous in the only case of periodic 
sources of period L. which is quite a particular case. 
Different algorithms of reconstruction are possible, 
depending on the class of signals. If the spectra of the sources 
are continuous, the reconstruction may be realized between 
each frequency bin and its previous bins. The contrast of the 
coherence between H(Si(n,io)), H(Si(n,jo)), and 
H(Si(n+l,kO)) allows to associate the kO-th component (at 
bin n+l) with the component i0 or j0 at bin n. This procedure 
is illustrated in $5 fig.3 on experimental data. 

5. EXPERIMENTAL RESULTS 

The simulation here after illustrates the results of a complete 
implementation of the algorithm in the frequency-domain, in 
the case of convolutive mixtures of two sources. The two 
sources are QARMA processes, mixed in a noisy context. We 
present in figure 2 the coherences between the two 
observations and the two sources. It proves that the sources 
are actually mixed in the observations. After separation in 
frequency domain, two signals are identified in each frequency 
bin. They have been extracted, using a likelihood principle 
[4]. We present in figure 3 the coherences between the two 
estimated sources after filtering by the specific filters 
proposed in $4 H(Si(n,l)), H(Si(n,2)), and one source 
estimated at bin n+l, H(Si(n+l,l)). We remark that, for each 
frequency bin, one estimated source is correctly correlated 
with Sl(n) since the second one is uncorrelated with it. The 
contrast of the coherence between H(Si(n.1)). H(Si(n,2)), and 
H(Si(n+l,kO)) allows to associate the kO-th component (at 
bin n+l) with the component 1 or 2 at bin n. This shows a 
very good quality of the separation procedure in all the 
frequency band. We present in figure 4 the coherences between 
the two right sources and the estimated ones after separation 
and reconstruction using the proposed technique in $4. The 
two curves close to 1 and the two curves close to 0 reveal a 
good quality of separation for each frequency bin and a good 
quality of reconstnrction of the sources. 

6. CONCLUSION 

We propose in this paper a generalization of the source 
separation problem to convolutive mixtures of wide-band 
sources in the frequency domain. We develop two specific 
points. In the first point, we study the feasibility of the 
separation in frequency domain with regard to the hypothesis 
of non gaussian sources. It is linked with the convergence 
speed towards gaussianity of signals after L-point discrete 
Fourier Transform. We test here a distance to gaussianity 
thanks to the spectral kurtosis. We analyse the influence of L, 
of the duration of the source tricorrelations and of a non linear 
filtering. We mainly develop the case of QARMA processes. 
The second point consists in the reconstruction of the 
estimated sources spectra from the signals identified at each 
frequency bin, since the sources associated to the ith 
identified signals are not necessarily the same from one 
frequency bin to another. The algorithm efficiency is then 
illustrated on QARMA processes, including the procedures of 
separation and reconstruction. 

0.5 

01 I I I 
0 10 20 30 40 50 60 

Fig2. Coherences between the observations and the right 
sources. 
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Fig3. Coherences between H(Si(n,l)), H(Si(n.2)) and one 
estimated source in the reference bin 16, H(Si(l6,l)). 
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Fig4. Coherences between the right sources and the estimated 
ones 
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