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ABSTRACT 

The use of adaptive algorithms such as Kalman Filtering, 
LMS and RLS t.ogether with FIR model structures is very 
common and extensively analysed. In the interests of im- 
proved performance an extension of the FIR structure has 
been proposed in which the fixed poles are not all at the ori- 
gin? but instead are chosen by prior knowledge to be close to 
where the true poles are. Existing FIR analysis would indi- 
cate that the noise and t,racking properties of such a scheme 
are invariant to the choice of fixed pole location. This pa- 
per establishes both numerically and theoretically that in 
fact this is not, the case. Instead, the dependence of fixed 
pole locat,ion is made explicit by deriving frequency domajn 
expressions that are obtained by using new results on gen- 
eralised Fourier series and generalised Toeplitz matrices. 

1. INTRODUCTION 

In the context of estimating a vector of n FIR taps 0 using 
an adaptive algorithm, a very well known result that has 
proved to be of great intuitive utility is that the variability 
of the FIR frequency response estimate G(ejw,@ (e^ is the 
estimate of 0) is approximately given by [3] 

pu;K. 
Vzu{G(e+, g)} z n- 

[@ubJ)l’ (1) 

where K. is some constant, 11 is t,he step size, (rz is the white 
measurement noise variance, aU (w) is the input excitation 
spectral density, and T = 1 for Recursive Least Squares, T = 
l/2 for Kalman Filtering and r = 0 for the LMS algorithm. 

Recently, workers [8] have suggested the use of ‘extended 
FIR’ structures wherein all the poles are not necessarily at 
t.he origin, but instead some (or all) are chosen to be as close 
as possible to where the true poles are believed to lie. 

In assessing the validity of this scheme, a natural ques- 
t.ion arises as to how (1) should be modified to describe 
%r{G(r’” i)} where now 0 is a vector of ‘generalised’ FIR ’ ! 
t.aps. The most obvious course is to conclude that these new 
model structures are really just the old FIR ones with an in- 
put {ut} pre-filtered by an all-pole filter F(q) = l/D,,(q) 
where D,,(q) = nL=i(q - Sk) with {[k} being the user cho- 
sen guesses as to the true pole locations. This would imply 
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that the variability of the FIR. ‘numerator’ part is then given 
by the expression (1) with the substitution 

made. The frequency domain variability of the whole model 
structure, being the FIR. numerator part divided by the 
frequency response of the fixed denominator part, should 
then be (1) with the substit$ion (2) and then divided by 
IDn(e3W)12. Clearly the ID,(P’)j” terms will cancel, and the 
conclusion will ensue that the variability of Var{G(e@, g)} 
is invariant to the choice of fixed pole location. 

This can be tested on a simple example wherein the true 
system is 

G(q) = 
0.1548q + 0.0939 

(q - 0.6065)(q - 0.3679) 

and an n = 10’th order model is fitted using RLS when the 
input {ut} has spectral density @U(~) = lO(1.25 - cosw)-‘, 
the output measurements {1~t} are corrupted by white noise 
of variance a; = 0.01, and the algorithm is run for Iv = 
2000 data samples. In this case, the true variability can 
be estimated by the sample average over 200 Monte-Carlo 
simulations with different. input and noise realisations. This 
can then be compared to the approximation (1). 

For the case of all the {&} being at the origin (so that 
a true FIR structure is employed), then the results of such 
a comparison are shown in t.hc top plot of figure 1 - (1) be- 
ing the dash-dot line, and the Monte-Carlo estimate of true 
variability being the solid line. The agreement is excellent.. 

However, if all the poles are chosen away from t,he origin, 
five at, [k = 0.2 and five at & = 0.8 then when examining the 
theoretical prediction (1) and the true variability as shown 
in the bottom plot of figure 1, the agreement between the 
two has disappeared 

Nevertheless, for this latter case! note the good agree- 
ment between the true variability and the dashed line, which 
is a plot of an improved approximation presented in this pa- 
per. This new approximation is the old one (1) with the 
model order term 71 replaced with a frequency dependent 
function -y,,(w). That is, the main results of the paper are 
firstly that t.he previous reasoning, which tried to employ 
the pre-existing result (1) 1s misleading in its conclusion that 
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Figure 1: Comparison of (solid line) true variability to 
(dashed line) FIR based theoretical approximation (1). Top 
plot is case of nil poles nt origin (FIR case), bottom plot 
is case of all poles away from origin. Dash-dot line is the 
improved approximation presented in this paper (Th 4.1). 

Var{G(c’“! g)} is insensitive to fixed pole locations and sec- 
ondly the approximation 

A 

Var{G(e”“,@} z 7,,(w)& 

acts as a generalisation of (1) which in the case of fixed 
poles not at the origin, can be much more accurate than 
(1). The function r,,(w) is purely a function of the choice of 
pole position {[k}, and for the special choice of all of these 
at the origin (FIR), then m(w) = n as a special case. The 
development of this new approximation depends on the use 
of several new results which are generalisations of classical 
Fourier series and Toeplitz matrix properties to the case of 
the underlying orthonormal basis being generalised from the 
usual trigonometric one. 

2. PROBLEM FORMULATION 

This paper considers situations where an observed input se- 
quence {ut} is related to an observed output sequence {yt.} 
according to 

1~t = Gt(q)w + vt (4) 

where {vt} is a zero mean white noise process with variance 
E{I$} = 0: < 00 and 

G(q) = 2 gt(n)C 
is a possibly time varying linear system with impulse re- 
sponse {st(n)} E C2. It is assumed that {Tit} is a realisa- 
tion of a stationary stochastic process with covariance func- 
tion R,(r) = E{~tut-~} and associated spectral density 
au(u) = Cr=“=_, Ru(r)ePJdT and that {ut} is weakly un- 
correlated with {vt} in the sense that IE {utvt--r} ( + 0 as 

r + oo. It is also assumed that au(w) > 0 and that a,‘(u) 
has a finite dimensional spectral factorisation. 

At issue is the estimation of the (assumed unknown) t.imc 
varying dynamics Gt(q) by means of the observations {ut} 
and {yt}. There are many approaches to this problem, but 
a common theme [2] is to express the dependence (4) in a 
linear regression form yt = &et + vt where the ‘regression 
vector’ dt depends on measurements of {u,,} and {y/t} up 
until t = k and 8t E R” is a vector of n parameters in a 
model structure G(q, Bt) that attempts to describe the true 
dynamics Gt (q). An estimate of Gt(q) is then obtained as 
G(q, 0,) where the estimate 19~ is obtained recursively via 

6,‘ = & + Lt(yt - qm,: p E (O? 1) 
where Lt is a gain vector that rr1a.y be computed in various 
ways. A common choice for this gain vector is Lt = l&, p E 
(0,l) in which case (5) is known as the ‘gradient’ or ‘least 
mean square’ (LMS) algorithm. Another co~rm~o~~ choice is 
Lt = PtQt where Pt satisfies 

1 
Pt=- Pt-1- 

{ 

Pt-14t&Pt-1 
x A + @Pt-14, > 

with X = 1 - /I,IJ E (0,l) and Pt is initialised with some 
positive definite PO and with t.he ensuing algorithm being 
known as ‘Recursive Least Squares’ (RLS). Finally, if the 
time variation of the parameters Bt are modeled via a ran- 
dom walk as et+1 = et + Prnt where rut is a stationary zero 
mean vector white noise process with E{tutw~} = &, then 
the update law 

L[ = 
pPt-I& 

uz + j&P,-14, 

where Pt satisfies the Riccati equation 

with C > 0 and symmetric is known as the Kalman Filter. 
When employing any of these adaptive schemes, a cen- 

tral question is the accuracy of the estimate G(q, 0,) as a 
description of Gt(q). The most common way of assessing 
this is to examine the accuracy of & itself [2]. This may be 
achieved by defining & as the true parameter vect.or that al- 
lows the model structure to exactly describe t.he underlying 
time varying dynamics as G(q, 0,) =-Gt (q) and by defining 
the estimation error & as & k et - et. 

The quality of an adaptive estimation scheme can then 
be quantified by using E{s”&} as a measure of estimation 
accuracy. Unfortunately, as pointed out in [3, 41, the exact 
expression for this covariance will be very complicated ex- 
cept in very special circumstances. The main result of [4] 
which will be central to the analysis of this paper is that 
in spite of this, and under the stated assumptions and the 
definition R fi E{qSt&} then E{&07} may be approximated 
by a time varying matrix IIt which in the steady state case 
converges to a positive definite symmetric matrix II given 

by 
LMS: The solution of the Lyapunov equation 

IIR + RII = ,m;R + CC&. (8) 



RLS: 

n = !f$-’ + $Q. 

Kalman Filter: For the special case of C = Q: 

(9) 

II=; (p$+$)S, a2SRS=C. (10) 

However, as argued in [3, 11, in many cases the int.erest is 
not in the accuracy in parameter space, but the accuracy in 
how close the estimated model G(cJ, &) is to the true system 
Gt(q) in terms of the error et(ejw) 4 Gt(ej”) - G(ej”,&) 
in the estimated frequency response. In this paper, model 
structures G(q, 0,) are considered for which the estimated 
frequency response depends IinearAy on the estimated pa- 
rameters as G(e j”,&) = lY;(ej”)O, so that & = I’,k(q)ut 
where 

l-7, (cl) 4% PO(q), Bl Cd> 7 BP- 1 Cdl 
T 

(11) 

is a vector of n rational transfer functions f&(q). For exam- 
ple, B,(q) = q-” corresponds to an FIR model structure. 

III this case an approximate frequency domain quantifi- 
cation of adaptive performance may then be taken as 

z IqejyIJ,(ej”) (12) 

where .* denotes ‘conjugate transpose’. Unfortunately, again 
t.his expression will in general be of a very complicated na- 
ture. The main contribution of this paper will be to follow 
the lead of [3] and derive simple approximations for (12) 
such as (3). 

3. MODEL STRUCTURES 

The model structures examined in this paper have recently 
been proposed by Williamson and Zimmermann [8] where 
they have been termed ‘fixed pole adaptive filters’. They 
are formulated as 

n-1 

G(q?&) = n(q-Ek) [ 1 
-1 1L-1 

c w4~lk (13) 
k=O k=O 

.4 special case of this structure arises when all the poles I<,,} 
are chosen at the origin in which case (13) is an FIR model 
structure. 

However, empirical evidence [8] supports the fact that 
in an adaptive filtering context, a significant improvement 
in estimation accuracy is possible by avoiding poles {Sk} all 
fixed at the origin, and instead distributing them in the unit 
disk so as to be as close as possible to the true poles of Gt(q). 

In spite of the pleasant properties enjoyed by the model 
structure (13), its generality (as compared to an FIR. struc- 
ture) makes frequency domain analysis of adaptive algo- 
rithms much more difficult. This has already been fore- 
shadowed by the simulation examples of 3 1, but to be more 
explicit on a theoretical level, the two key ideas of the sem- 
inal work of [3] on this topic were to notice that in the FIR 
cnse 

1. III~ is a Toeplitz matrix which can be formulated, for 
some spectral density f as l& = T,,(f) defined as 

[T,L(f)]m,l = & Ix ej‘+-E)f(w) dw. 
-77 

2. By recognising this Toeplitz matrix feature: then (12) - 
specifying E{ IGt(e+‘)l”} is actually an n’th order Fourier 
reconstruction of the function f(u): and so should be 
approximat.ely equal to f(w). 

The reason why these principles have failed in the simula- 
tion example shown in figure 1 of 5 1 is that the underlying 
function being Fourier reconstructed depends on the cffec- 
tive input spectral density (for RLS, the function f above 
is f = lDtr12/@,,), and if there are fixed poles in the model 
structure, this is an all-pole filtered quantity, which will be 
far less smooth (the degree depending on the number of fixed 
poles not at the origin) than the original spectral density 
a,,. Since the accuracy of the Fourier reconstruction used 
in step 2 depends crucial1.y on the degree of smoothness, it 
eventuates that for a high proportion of the fixed poles not 
at t,he origin, the approximation (1) breaks down because 
the underlying Fourier reconstruction used in step 2 has not, 
approximately converged. 

The solution proposed in this paper and shown as the 
improved (dashed line) approximation in figure 1 is to ab- 
sorb the fixed poles into the model structure, but still in on 
orthonormally parameterised way. In this case, certain new 
results on generalised Fourier convergence and the algebraic 
properties of generalised Tocplitz matrices are employed [6] 
to provide an approximation that is improved since it in- 
volves generalised Fourier reconstruction of a function that 
is invariant to the choice of fixed poles, and hence has fixed 
smoothness. 

To be more specific, the strategy employed here involves 
replacing the model structure (13) with the following or- 
thonormal formulation 

p-1 

where 

G(q, 0,) = c Qt (7tVL(q) 
n=O 

(14) 

f??Jq)=(yJyjyjy) (15) 

Since the poles of the model structure (14) and (13) are 
identical, then they are equivalent in the sense that for some 
nonsingular J E R pxP the parameter vectors f3~ in (14) and 
0; = J& in (13) describe exactly the same transfer function. 
As well, with initialisation PO = J-lPAJ,J-T consistent with 
this linear re-parameterisation, the RLS updat.e equations 
are invariant to the re-parameterisation in the sense that 
e?, = .I& so t.hat frequency response estimates arc identical: 
G(ej”,$t) = G(e’ 1 w, &). This same property also applies to 
the Kalman Filtering update law (6):(7) provided the corn-- 

patibility C = J-‘C’JmT is also maintained. 
The above ‘basis functions’ {& (2)) are orthonormal in 

the sense that 



In this case, the idea of Toeplitz matrices is generalised in [6] 
to one in which a matrix M,,(f) is defined by a spectral 
density f(w) as 

is considered, in which case, taking the R.LS case as an ex- 
ample, it is possible to show [5] that IIt % 1/2h&,(&/@U). 
Continuing by subst,ituting r,,(q) = [L&(q), ?&,-~(q)]~ 
then provides that from (12) 

where 
p- 1 

y,,(w) k 2 I&(ejw)lz. (16) 
k=O 

Finally, in [6] Fourier analysis is generalised in such a way 
to establish that 

,$IL &rZL(ej”)M,, ($$) r,(ej”) = & 

so that if one assumes that this convergence holds for finite n, 
the extended approximation (3) shown as the dashed line in 
figure 1 eventuates. Furthermore, the complete contribution 
of the fixed pole location choice is captured by the term 
m(w), which for several choices of {[k} is shown in figure 2. 

Figure 2: Plot of -y,,(w) for various choices of pole location. 

4. EXTENDED VARIANCE EXPRESSIONS 

Having presented an informal overview for the R.LS case of 
the methods used to provide the improved approximation 
of this paper, the results are now stated more comprehen- 
sively as (the quantity a(w) A E { IGt+l(ejW) - Gl(ej”‘)I*} is 
used t,o quantify the time variation of Gt(q) in the frequency 
domain-see [5] for details) 

Theorem 4.1. For the LMS algorithm and the model struc- 
kre (14), then 

E { l~r(ejW)12} z F [PO; + a] 

For the RLS algorithm and the model structure (13) or (14), 
then 

E { I~t(ej”)lZ} M q [ -$$ + c”(w)] 

For the Kalman Filtering algorithm, the model structure (13) 
or (14) and under the assumption that Q = C, then 

Proof. Derived by using the parameters space approxima- 
tions (8), (9) and (10) together with the generalised Fourier 
and Toeplitz results of [6]. See [5] for details. 0 

5. CONCLUSION 

This paper has presented only an overview of results that 
are more fully developed in [5], where it is shown that The- 
orem 4.1 applies for any model structure that allows the 
regressors to be generated as 

dt+1 = A& + But, 

where ,4 E RnX” . IS any matrix with eigenvalues at loca- 
tions {co, .&-I} and B is any n dimensional vector. As 
well, in [7] the results are further extended to cases where 
the poles are not fixed, such as .4RX and ARMLIAX model- 
ing. In this case it is shown that the presence of fixed noise 
model zeroes (which is equivalent to pre-filtering the data 
{ut} and (1~1)) implies that improved accuracy approxima- 
tions to Var{ G(ej”, $)} can also be generated along the lines 
of this paper by replacing 71 with m(w). 
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