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ple“{ thdn FIR. Iters. some (l(‘\lgl m('thods f()
ITIR hlt(‘l‘ banks have been presented in the recent
literatures. Smith et al. have proposed a class of
linear phase IIR filter banks. However this method
restricts the order of the numerator to be odd and
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present two design methods for linear phase IIR
filter banks. One is based on Lagrange-Multiplier
method . in which optimal TIR filter banks in least
squares sense are obtained. In the other approach
. IIR filter banks with the maximum number of
zeros are derived analytically.

Filter banks are widely used for application to imn-

aro enoech and communication A number of
age |, Speetn ana comimnication . A numner ol

design methods for two channel perfect reconstruc-
tion (PR) filter banks have been presented[1]-[8].
Asis well known IR filters have computational
efficiency compared to FIR filters which meet the
same specifications.  Several design methods for
nonlinear phase (or guasi linear phase) IIR filter
banks have been proposed [3])-[6]. However nonlin-
ear phase IIR filter banks are not sunitable for im-
age coding, becanse a symmetric extension method
can not be employed. For image application, the

convaliution }\qcnll on the sy mmetric oxXtoencion ig
CONVOUTIC DASeq O TAae syimnmeirne oxtrension 1is

preferable to a linear convolution in order to reduce
dist()rrion around boundaries . and thus a lincar
pllrl\( (lldlrl( ll"ll\ll( 15 llllp()rfﬂlll

Since linear phase ITR filter banks are generally
nonstable or noncausal. it is not appropriate for in-
finite length signals such as in speech application.
However . for finite length signals such as images
. a noncausal filtering is possible. Using the sym-
metric extension. the implementation is no longer
causal. And thus . the lincar phase [IR filter banks
can be an alternative candidate for subband image
coding systems.

Smith et al.[T] have proposed PR lincar phase
TIR filter banks and Matsumura et al.

2428 Raad A Ui(l dvaa VSN

sented a design method of linear phase IIR filter
banks with quasi power complementary character-

tatioa
iSUICS.

[8] have pre-

In [7] and [8] .however, ouly the TIR filter hanks

with odd-order numerators were congidered and
these IIR filter banks have some drawbacks.
In this paper , we propose two design methods

for the linear plmsv IIR filter banks.

One is based on Lagrange-Multiplier technique
. in which optimal IIR filter banks in least squares
sense are obtained. In the other approach . IR

filter banks with maximum numbers of zeros are
derived analytically.

2. CONVENTIONAL LINEAR PHASE
IIR FILTER BANKS

The structure of a two channel filter bank is shown
in Fig.1
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Fig-1. The structure of a filter bank
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must be functions of 2. in this paper we deal with
the following transfer functions
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are symietric ()r antisymmetric polynomials and
Dy(z%) and D|(z2) are symmetric polynomials whose
orders are a multiple of four. When Hy(z) and
H | {z) are specified. the synihesis system Go( 2) and
G (z) .which satisfy the perfect reconstruction .
are given by [7]

Go(z2) = 77— NEh (3)

Ho(z)H;(
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2H()(—Z)
Ho(=)Hy(—z) — Ho(==2)Hi(z)

It is known that these filter lmnl\s can be de-
signed in the following two ways|7

Type 1.

First Ho(z) and H,(z) are specified , and then
Go(z) and G, (z) which satisfy the perfect recon-
struction condition are determined from (3).(4) .

In this case, the total computational complex-
ity in the synthesis system is about twice as much
as that in the analysis system.

Gi(z) = (4)

Type II.

The analysis filters Ho(z) and H(z) are designed
wihch satisfy

Ho(z) = H\(-=) ()
.then the synthesis system is determined as
, 1, Dy(=?) | =Dy(=?%)

Golz) = = - : 6
ol 2" Foy(=2) Eon(lz)) (©)
1, Dy(z?)  zDg(z?) -

Gi(z)== = =)
(=) 2 Eqi(z?)  Eoo(z?) (@

The drawhack of this class of filter l)dnl\s is that
the order of the numerator is restricted to he odd.
For some applications . it is required that Hg(z)

and H,(z) have the different number of zeros at
z = —1and z = 1. respectively and highpass filters
should be compact and lowpass filters should be

smooth. o .
From these reasons. it is desirable that Ho(z)

has a different characteristic from H,(z).
Moreover, it is not necessarily guaranteed that
the synthesis filters Go(z) and G(z) have good
frequency responses in the both cases[8].
In this paper. in order to overcome the above
problens we impose the following condition on the
analysis filters.

Hy(z)H1(—z) — Ho(—z)
Using Hy(z) and H,(z) which satisfy (8). Go(=)

and G (z) have the same charactaristic as Hy(—z)
and Hy(—=x). respectively.

Hl(:)ZZ—(21+” (8)

3. DESIGN ALGORITHM
3.1. Lagrange-Multiplier method

In this section we deseribe a design algorithm based
on Lagrange-Multiplier method.

In this paper, we consider Ho(z), H,(z) which
have even-order symmetric numerators. but a sim-
ilar discussion can be applied to the other types of
lincar phase IIR filters.

In this method. we suppose that a highpass fil-
ter H)(z) has already been designed. Then Hy(z)
is designed to satisfy the condition (8).

Now we express the nmmerators and the denom-
inators of Hy(z) as

Ho(=) a(0)+a(1)z "+ Fa(1)z"* 2 =D pa(0) s 2Y

(9)
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The frequency response Ho(w) is

‘4 N (u,’ )

M —2N)w
d(2N) + Ap(w)

I{()(u«') =7 (10)

where,

Ax(w) = a(M) +22,_|n(\[—n)(os('ru)
Ap(w —22” (N — n)cos(2nw)

Without a loss of generality. d(2N) can be normal-
ized by 1.

Next . we define an equation error and a cost
function to be minimized as

e(w) = (1+Ap(w))(Halw) - 75575)
Hy(w) + Hy(w)Ap(w) — Av(e)

(11)
I—1

(acd) =D [W(w)elw) (12)
=0

where w; are diseritized frequency points and Hy( )
is a real valued desired amplitude response.
e(w)) ---e{wy_1)] can be written
in a matrix form as

U

-V

D+y'X (13)

E = ["(w'u)

E

D+[d"a"] [

where,
D = [Ir(u}())H,l(uﬁ()) ”'(.AJ|

Wwr—1)Halwr-1)]

VH (1)

d=[2d(N —2) 2d(N —4) ---2d(2) 24(0)]"
a=[a(M) 2a(M = 1) 2a(M —2)--- 2a(1) 2a(0)]’
[Uksra+1 = ( 1V H g(w )(()s "]\,«,])
k = 1,1..--.N I=0. L—1
[V]I\'+|.l+l = I-i'(w,)('()s(kw',)
k = 0.1.---.M [=01.--.L -1

([Ulx. indicates k-th row 1-th colomn elements)
Further we set

Q=Xxx" P=XxD"

And then Eq.(12) is rewritten as follows.

d(a.d) =y, Qy, + oP'y, + DD" (14)
Next. the PR condition is examined. The con-
dition (8) can be rewritten as

2 Do(2)Dy(z)

(15)
When the high pass filter is specified. (13) can be
expressed as the linear combination of the param-

eters ()f {E()()(:). E()]( ) D() } as

EOI(Z)EH)( ) E()()( )E”(:) = %;_

Cy, =m. (16)



From Eqs.(14). (16), the optimization problem
is stated as follows.

< optimization problem

min ®(a.d) =1y, "Qy, + Py, +

subject to  Cy, =m
The optimal solution of this problem is uniguely
given by

_Q Cl Y, _ p (1._
C o AT\ m )’ )
Including these. the design algorithm is con-
structed as follows.
[design algorithm]
1. H\(z). N. M. passband edge. stopband edge
are given.
2. Set WOw) =1
3. Solve (17)
4. Set “-,j_{.](u)) = 1/(1 + '1])(\.4/))
5. If |®* " (a.d) — ®(a.d)|/®(a.d) < € then
quit. Otherwise go to 3.
(.where i indicates the number of a iteration.)

3.2. maximally flat linear phase IIR filter
banks

1t is important for wavelet application that Hy(z)
and H{(—z) have some zeros at : = —1. Suppose
that Ho(z) and H,(—z) have a maximnm number
of zeros at = = —1. Then one can derive these
filters analytically.

Note that a similar discngsion about orthonor-
mal IR filter banks can be fonnd in [3)].

We consider the following analvsis system

: (1+:—I).-\'n
II(](:) = _‘m' (18)
(14 :"")%
Hy(z)= D) (19)
Here we assumne that L = (Vg + V) /2 is odd.
Then the product filter F(z) = Hy(2)H(—=)
is expressed as
1 :—| No+ N,
F(z)= B2 ) (20)

Dy(=2)D;(:?)

Eq.(8) means that the product filter F(z) is a half-
band filter. Using the Butterworth filter Hp(z)
with the a cut-off freqency of 0.57, F(z) in (20) .
which has the minimum order of denominator, can
be derived from

F(z)= Hp(z)Hp(:"") (21)

where the order of Hp(2) is L(= (Ng + N1 )/2).
Consequently, F(z) can be (‘,\pwss(_\d in a closed
form as

Ccg="HMEm

F(z) =

(L -3)/2

(2=l —ppMz—! —p;' W= =pyNz—t=pi— 1)
k=0

(22)

i
1DD

where
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L+ exp[—j(5 + & + F)]
1—exp[=j(5 + 7 + *F))

kw

b

e =

. * implies complex conjugate and C is a constant.
Note that py is purely imaginary.
Similarly .when (Ny + .V,)/2 is even,

Ce gy N+ N

F(z)=

(1 -21/2
(2" —pp)(a—T-
k=0

p,:' We=t—piyzl—p; !
(23)

Since the denominator of the Butterworth filter
with a cut-off frequency of 0.57 has only even pow-
ers of 27!, the order of the denominator of F(:
in (22).(23) is a multiple of four. Thus. one can
necessarily distribute the poles among the denom-
inator of Hy(z) and H {z) w hl(h have linear phase
and are the polynomials of =77,

Although these poles can h(' freely ditributed
among the filters, we have observed that hetter
performances are obtained for an image coding when
Ho(z) has larger |pg| and H\(z) has smaller |pg|.

]

4. SIMULATION RESULTS
4.1. Lagrange-Multiplier Method

Solving (17) without any constraints. the 6-th/4-
th order highpass filter H|(z) was designed in ad-
vance. Then we desigued 12-th/8-th orderHg(z)
by the proposed method. Both Hy(z) and H,(:)
have the band edges 0.47 and 0.67.

In Fig.2, the magnitude responses of the de-
signed filter are illustrated. where the dotted tline
shows the magnitude response of the FIR filter de-
signed by [2]. These FIR lowpass and highpass
filter have the order of 14 and 24 . respectively,

If we use symmetrically extended sequences of
input signals. Hy(z) and H;(z) requires 9.2 and
5.1 multiplies per sample, respectively while the
above FIR systews requires 8 and 12 multiplies per
sample. Note that the above 0.2 and 0.1 multiplies
per sample are required to compnute initial valnes
of output (for details , sec [7]).

Aud thus it can be seen from the figure that
the proposed IIR filter banks can achieve hetter
frequency response with lower computational com-
plexity than the FIR filter banks.

4.2. Maximally flat ITR filter banks

The 6-th/4-th order lowpass filter Hy(z) and the
3-th/4-th order highpass filter H,{z) were derived
from (23). The all zeros of Hy(z) and Hy(—z) are
located at = = —1. Since the first coefficient of
Eyy(z) is zero from (23), the number of coefficients
in the numerator is 6. The fregeney responses of
the obtained filters are shown in Fig.3. Since the
numetator of these filters can be expressed as a
product of 1 + =71, the filtering of the numera-
tors requires no multiplies. Consequently. the total
number of multiplies per sample is 4.

Next we examine image coding performance.
This IIR filter bank and (9.7)-tap Daubechies” wavelet
[9] were tested in the same environment. that is. 3-
level tree structured decomposition was used for



256 x 256 Lena’ and the all 10 bands were quan-
tized uniformly with the samne step-size. Fig.4 shows
PSNR versus entropy plot derived , where the en-
tropies were calculated by

Entropy = — Z Plog, (D). (24)
In the figure, ™" and “o’are the results of the pro-
posed IIR filter banks and the Daubechies” FIR
filter .respectively.
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Fig.4: PSNR vs Entropy plot



