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ABSTRACT 

A lattice st.ructurc based on the singular value decompo- 
sition (SVI)) is introduced. ‘I’hc lattice can also be proven 
to use a minimal number of delay elements and to com- 
pletely span a large class of M-channel linear phase per- 
fect reconstruction filter bank (T,PPRFB): all analysis and 
synt.hesis filt.crs have the: same FIR length of L = liA4, 
sharing lhc same center of symmetry. The latt.ice also 
structurally enforces both linear phase and perfect recorl- 
struction properties. is capable of providing fast and effi- 
cient implementation, and avoids the costly mat.rix inver- 
sion problem in the optimization process. From a block 
transform perspect.ive. the new lattice represents a family 
of generalized lapped biorthogonal t,ransform (GI.HT) with 
arbitrary integer overlapping fact,or K. The relaxation of 
the ort,hogonal constraint allows the GLBT to have signifi- 
cantly different, analysis and synthesis basis functions which 
can then be tailored appropriat.ely to fit a particular appli- 
cation. Several design examples are presented along with a 
high-performance GLl3T-based progressive image coder to 
demonstrate the superiority of the new lapped transforms. 

1. INTRODUCTION 

Linear phase perfect reconstruction filter banks have been 
used extensively in numerous applications, especially image 
processing [I]. In the two-channel cast:, all solutions lla\re 
hm found whereas thrrc: are still many open problems in 
:Wchannel cases. An attract.ive approach to the design and 
implementation of I,PPR.FB is the parameterization by lat.- 
t,ice struct,ures based on the factorizat,ion of tile polyphase 
matrices E(z) and R(t) shown in Figure 1. The latticr 
structure offers fast. and efficient implementat,ion, retains 
hoth LP and PH properties regardless of coefficient, quanti- 
zation, and (if it is general enough) guarantees that, 110 op- 
timal solution will be exchlded in the optimization process. 
Complete and minimal two-channel PR lattice structurr has 
been reported in [‘L]. U-channel lattices have been pre- 
scnted for the more restricted paraunitary case [3], resulring 
in thr generalized lapped orthogonal transform (GenLOT) 
[4]. No genera1 lattice has been reported for the biorthogo- 
nal case (defined as R(e)E(z) = ~~“1). Only several par- 
t.icular solutions were proposed so far: (&an replaced some 
orthogonal matrices in [4] by cascades of invertible block 
diagonal mat.rices [s]; Malvar suggested a simple scaling of 
t,hc first ant,isymmetric hasis function of the initial block 
(which was chosen to he the DCT) [6]. 

x[nl 
-1M - ‘P - 

i’ ‘I - 
‘1M - ‘!M Y’ 

-I I1 - 
/.. . E(r) R(Z) l :�I 

. l l . 

. l - . 

-I 
z 

- nn;ilys~s bank -.-WC synthesis hank -+ 

Figure 1. Polyphase representation of LPPRFB. 

III this paper, WC first introduce a gcncral st,ruct.ure that. 
propagates t.he linear phase property. I+uthcr imposition 
of the biorthogonal pr0pert.y on this structure results irl a 
complete and minimal LPPftFR lattice whose invc:rl.it)lc co- 
efficient matrices are then paramet erized by t,he SVI). In I hc 
lapped transform language! the strurt urc is interpreted as a 
robust characteriz.ation of t,lle GLBT. Several lapped t I‘RIIS- 
forms obtained from the nonlinear opt,imization of the lat- 
tice coefficient.s are presented. Finally, the superiority and 

the potential of the new ].,‘I‘ family are illustrated through an 
image coding example. The Gl.H’l‘-based embedded co&r 
consistently outperforms the wavelet-based version Sl’ll-I’1 
[7] by a large margin. The iIrll’l.(~‘e”ient. in F’SNH ciul I)(* 
up to an astouding 2.63 dB. 

Notation-wise, vec:t.ors and matrices arc denoted by bold- 
faced characters. SpAal matrices havr rcscrvecl symbols: 
I: J, 0. D represents, respectively, t.hc idclltity matrix, t.he 
reversal matrix. the null matrix, and the diagollal matrix 
whose entry is + I when t.he corrc:sl)onding filt,er is syrnmt:~,- 

ric and -1 when the corresponding filter is antisymmct ric. 
Capital lett,ers M. L, I< denote respectively t.he mlmbcr of 
channels, the filter length, and LIIC overlapping factor. 

2. LATTICE STRUCTURE 

2.1. Goneral LP-propagating Structure 

Considrr an :CI-channel FIR I,l’PHFB wit.)) all analysis and 
synthesis filt.crs of length L = KM, having the HillllC cellt.er 

of symmetry (.V x L GLRT). The associated polyphas;c 
matrix E(z) has t,o satisfy the 1.P property [3] 

E(Z) = t --(‘i-‘) J, E(;-‘) J. 
(1) 

Define t hc: order-(A’ - I + X) polyphase mat.rix F(t) E 
G(z)E(z) where the all-zero o&r-X G(t) is the prop++ 
ing structure. Wl:e are adding on or peeling off a block iI1 the 



lattice depending on causal or ant,icausd G(Z). The order :I’ 
is purposely chosen t.c’ be arbitrary so t.hat G(z) can cover 
all classes of t‘B that. ~nay be unfact~orizable will) order-l 
st.ruc‘t.urcs (odd-channel. for inst.anc:r). The following t,he- 
orcm int.rc’ciuces a pync:ral strurt m-e for G(z) t c’ propagate 
t.hc: LP property. 

?%eorem I: F(r) has LP and PR if and only if G(Z) is FIR 
invert,iblc and takes the form G(z) = 2-N D G(z-l) D. 

/‘roof: Using the LP property of E(Z) and F(z)! we have 

F(Z) = 2 -(I~-ltAI')DF(z-l)J 

_ --("-'t")DG(--')E(z-l)J 

- --"DG(--I)--("-')E(,--')J 

_ --"DG(2-')Dz-("-')DE(z-')J 

= z -“DG(/)DE(z). 

Il’or E(t) and F(t) to have FIR inverses, it is necessary and 
sufficient t,hat G(z) is FIR invertible and 

G(z) = %-‘I’ D G(z-‘) D. 0 

Let G(z) = C;“=, A,z-‘. The above form of G(z) im- 
poses int.erc:sting symmetric constraints 011 the matrices A,. 

G(z) = 2-N D G(z-‘) D = t-“D(CfJ_,‘A,t’)D 

= D( c:“_“A, 21--N )D = D(~;1~,A,~-,z-‘)D 

= C~~,(DA,~-,D)~-’ 

===+ A, = D AN-, D. (2) 

2.2. GLBT Lattice Structure Based on the SVD 

Assume that 12f is even. In this case, there are F symmetric 

and v antisymmetric filters [3]. Furthermore, we know t.hat 
I,I’PRFB exists for every integer Ii’ 2 1 [3! 41, i.e.. these 
FB can be factorized by order-l G(t). If 5’ = 1 in Eq.(2), 
A1 = DAoD. G(z) then takes the general form of G(z) = 
Ao +r -’ DAoD. It cari t’c proven t,hat. cvcry aforementioned 
rlc’ll-trivial T.PPRFB can be factorized using he following u u 
lot-111 for A” [Xl: AQ = f v v [ 1 1 where U and V are 

arbitrary + x y matrices. So, G(z) can be factorizccl as 

follows 

u+z-‘u U-t-‘U 
V-t-~V v+z-lv 1 

=i[ ‘(: :] [: !I] [i A] [: ‘I] 

42 ; a w A(2) w. (3) 

Since W and A(Z) have trivial inverses, G(z) is invert.iblc 
if and only if + is invertible? i.e. U and V are invertible. 
Tl~c: polyphasr matrix of any even-channel LI’I’HFB with 
filter 1cllgt.h L = I< j1.1 can be rcalizetl by a cascade of (IS’ - 1) 
G, blocks and a zero-&lay initial mal.rix Eo: 

E(Z) = GI<-~(z)G/<-z(z) ..’ G,(Z) Eo (4 

The starting block Eo has no delay clcmeut . reprrsent.ing 
LI’PRFB of 1rngt.h RI, and was often chosen to be DC’7 
[4. .5> 61. (:enc!ral Eo satisfying Eq.( I) can be fact.orized ah 

I’i’r Eo t.o have l’I{. Uo and Vo again have* to I)(, invertible. 
‘L’his result, should not come as a surprise:. ‘I‘tic factorization 
is very similar to t,he C:enLOT’s [I]; (,I IC only difference ticrf 

is that U, and V, do not, have to be cwtJ~ogcmtl. Now. the 

difficulty arises: how do we complet,ely charactcrizc~ I IIC:SC: 
+ x + nonsingular matrices? 

Recall that every invertible mat,rix has an S\:D: U, = 

u*or*u*1. where U,O and U, 1 arc orthogonal mat.rices. RIIC~ 

J?, is a diagonal matrix wit.h positive clcment,s [l]. Thlls! +, 
can be furtIler fact.orized as 

Thr orthogonal matrircs U,o. U,]. V,o. and V,, arc’ I’araIIl- 
eterized by w rot.ations each. The diagonal rrlatri- 

CYS J?, and A, are charact,erized by $ positive I’aralrlcters 
each. The complete latticr struc:ture is shown in I.‘igllrch 
2 (drawn for M = 8). ‘I’he most general &! x I, (:I,H’1’ 
can br parameterized by y parameters as expected from 
LP systems. Ilowever, the SVD pararllebel.ization in &I.(S) 
has three advant,ages: (i) exact reconstruction is guaranteed 
structurally under a mild condition - as long as IIOIIC of t.hcs 
diagc’llal coefficients is quant.izc:cl to zero: (ii) SVD rcl’rc:- 
sentation avoids the costly matrix inversion problem in the 
optimization process; (iii) it is murh siml’lcr 1.0 prevent the 
matrices from bc:ing singular or Ilc:ar-sirlgllliL1~. 

It is also very <!asy to verify t,hat all previously reported 
L,I’l’RFB’s lattice st.rur:turc:s arc special cases of t.h(, IICW 
GLH’I‘ lattic:e. For examples, the CLT design examl’lct in 
[5] has M = 8, I\’ = 2, UOO and VOO from t,hc I)CT. Uol = 
Vol = ro = Ao = I: and VI parameterizcd as a c:as(:a(lc: of 
block diagonal matrices. The LBT in [6] has !2/1 = 8: I\’ = 
2, Uo0 and VOO from the IKT, Uol = Vol = r. = I, 
A0 = diag[J;Z 1 1 11, and Ul? V1 to be orthogonal. 
When orthogonality is imposed? we get bac:k CenLOT [4]. 
M’hen JI = 2. the IaLtice t.urns into a simplified form of 
‘I’ype-A system lattice in [2]. Formal proofs of t.hr lat,tice’s 
completeness and minima1it.y will be prescnt.cd ill [8]. 

3. DESIGN EXAMPLES AND GLBT 
APPLICATION IN IMAGE CODING 

Figure: 3 presents several (; I ;lj’I’ design exarnplcs ol)~.airlc~cl 
from nonlinear optimization of the new 1at.t iw coefficients 
with various c:ost functions. ‘I’hc analysis banks are on t,ol). 
1)esigns in Figure 3(a). (b), and (d) arc IK’l‘-based. \Yhilr 
increasing the CiT,RT length does not, improvc the coding 
gain much! it helps in the cast: of stopband attenuat ic’ll 
(where longer filters arc desired) as testified in Figure C%(C). 

One of the: most popular applications of the GLB’I’ is in- 

age compression. Overlapping analysis filtcars reduce int,er- 
block redundancy. providing higher coding cffic:iellcy of thf 
t rimsform coefficienb, while overlapping syrit tic& filters 
whose: encls decay asympl.otically to zero cli11lirlal.e blocking 
artifacts. F,ach bank can IIOW be designed ay~~~rc~y~r~iat.c~l~. 



Figure 2. Lattice structure for the GLBT. 

(a) 0-J) (cl Cd) 
Figure 3. GLBT design examples (a) A4 = 8 1, = 16 optimized for codiug gain, DC attenuation aud mirror frcrlucncy 
attenuation (b) :%I = 8 1, = 32 optimized for coding gaiu and DC attenuation (c) A4 = 8 L = 32 optimized for analysis 
stopband attenuation (d) A4 = 16 L = 32 optimized for coding gain. DC and mirror frequency attenuation. 

For the case of M = 8 1, = 16. GT,R’I’ ophnized for pure 

coding gain can at.hin 9.6:3 dl3. However, WC trade off 0.01 
dT3 of coding gain in Figure 3(a) for high attenuation at 
TX’, IKW-DC: and mirror frequencies bo ensure high visual 
qua1it.y in the reconstruct.ed images as well. The 16 x 32 
GI.IjT in Figure 3(d) achieves an impressive coding gain of 
9.96 dl3. When the new transforms are incorporated into the 
block-transform progressive coding framework described in 
[9]! t,hc> resulting (:LBT-based embedded coders provide un- 
rivaled objective and subjective performance as indicated in 
Table 1 and Figure I(b)-(d). 1 “or a smooth image like Lena 
which the wavelet. t,ransform can sufficiently dccorrelates, 
t,he best wavelet,-based embedded coder SPIHT [?‘I provides 
a comparable performance. However. for a highly-texturctl 
image like Barbara. 16 x 32 CI,HT coder can provide a 
PS.UR. gailI of around 2.5 dH over il wide range of bit. rates. 
‘I‘hc visual rcconstrurtrd image quality is also-superior: t,ex- 
tllrc is beautifully preserved: blocking is completely elimi- 
Ilat.ed. RMI ringing is barely noticeable. Comparing t,o the 
optimal 8 x 10 GenLOT in [9]! the 8 x 16 GLBT in Figure 
:3(a) already offers comparable performance at. much lower 
computational complexit,y. More otjjective and subjective 
evaluation of GLBT-based progressive coders can be found 
a(. l~ttp://.sai~~on.ece.~~!i.~(:.edu/-u~c~c!emeb/Codcr/index.ht7ral 

along with more details on the coding scheme. 

4. CONCLUSIONS 

We have prcscnted in t,his paper a general, albeit minimal, 
lattice st,ructure for :\f-channel /i&Y-length LPPHFE’U. ‘1’11~: 
novel latbice based on the SVD provides a robust. implc- 
mentat.ion and a friendly tlcsign procedure for all lapped 
transforms wit11 arbitrary int cgcr overlapping factor fi, 
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‘lhhle 1. Objective coding result comparison 

Figure 4. Emtwcltied coding results of Bz-whra at 1:32 cwmpression ratio (a) original image (II) SI’IHT, 27.68 dB 
(c) embedcieti s x It; GLBT. 29.04 dB (d) crr~l,eddrd It; x 32 GLBT. 30.18 dB . 


