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ABSTRACT

A lattice structurc based on the singular value decompo-
sition (SV1) is introduced. The lattice can also be proven
to use a minimal number of delay elements and to com-
pletely span a large class of M-channel linear phase per-
fect reconstruction filter bank (I.LPPREFB): all analysis and
svnthesis filters have the same FIR length of . = KM,
sharing the same center of symmetry. The lattice also
structurally enforces both linear phase and perfect recon-
struction properties, is capable of providing fast and effi-
cient implementation, and avoids the costly matrix inver-
ston problem in the optimization process. From a block
transform perspective, the new lattice represents a family
of generalized lapped biorthogonal transform (GLBT) with
arbitrary integer overlapping factor K. The relaxation of
the orthogonal constraint allows the GLBT to have signifi-
cantly different analysis and synthesis basis functions which
can then be tailored appropriately to fit a particular appli-
cation. Several design examples are presented along with a
high-performance GLBT-based progressive image coder to
demonstrate the superiority of the new lapped transforms.

1. INTRODUCTION

Linear phase perfect reconstruction filter banks have been
used extensively in numerous applications, especially image
processing [1]. In the two-channel case, all solutions have
been found whereas there are still many open problems in
M-channel cases. An attractive approach to the design and
implementation of LPPRFB is the parameterization by lat-
tice structures bascd on the factorization of the polyphase
matrices E(z) and R(z) shown in PFigure 1. The lattice
structure offers fast and efficient implementation, retains
both LP and PR properties regardless of coefficient quanti-
zation, and (if it is general enough) guarantees that no op-
timal solution will be excluded in the optimization process.
Complete and minimal two-channel PR lattice structure has
been reported in [2].  M-channel lattices have been pre-
sented for the more restricted paraunitary case (3], resulting
in the generalized lapped orthogonal transform (GenLOT)
[1]. No general lattice has been reported for the biorthogo-
nal case (defined as R(2)E(z) = z_""I). Only several par-
ticular solutions were proposed so far: Chan replaced some
orthogonal matrices in [4] by cascades of invertible block
diagonal matrices [5]; Malvar suggested a simple scaling of
the first antisymmetric basis function of the initial block
(which was chosen to be the DCT) [6].
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Figure 1. Polyphase representation of LPPRFB.

In this paper, we first introduce a general structure that
propagates the linear phase property. FFurther imposition
of the biorthogonal property on this structure resulis in a
complete and minimal LPPRFB lattice whose invertible co-
efficient matrices are then parameterized by the SVI). In the
lapped transform language, the structure is interpreted as a
robust characterization of the GLBT. Several lapped trans-
forms obtained from the nonlinear optimization of the lat-
tice coefficients are presented. Finally, the superiority and
the potential of the new LT family are illustrated through an
image coding example. The GLBT-based embedded coder
consistently outperforms the wavelet-based version SPIH'T
[7] by a large margin. The improvement in PSNR can be
up to an astouding 2.65 dB.

Notation-wise, vectors and matrices are denoted by bold-
faced characters. Special matrices have reserved symbols:
I, J, 0, D represents, respectively, the identity matrix, the
reversal matrix, the null matrix, and the diagonal matrix
whose entry is + 1 when the corresponding filter is symmet-
ric and —1 when the corresponding filter is antisymmetric.
Capital letters M, L, K denote respectively the number of
channels, the filter length, and the overlapping factor.

2. LATTICE STRUCTURE

2.1. General LP-propagating Structure
Consider an M-channel TR LPPRFB with all analysis and
synthesis filters of length L = K'M, having the same center
of symmetry (M x L GLBT). The associated polyphasc
matrix E(z) has to satisfy the I.P property [3]

E(z) = """V DE:YJ. (1)
Define the order-(K — 1 + N) polyphase matrix F(z) 2

G(z)E(z) where the all-zero order-N G(z) is the propagat-
ing structure. We are adding on or peeling off a block in the



lattice depending on causal or anticausal G(z). The order N
is purposely chosen to be arbitrary so that G(z) can cover
all classes of F'B that may be unfactorizable with order-1
structures (odd-channel, for instance). The following the-
orcm introduces a general structure for G(z) to propagate
the LP property.

Theorem I: F(z) has L.P and PR if and only if G(z) is FIR
invertible and takes the form G(z) = 2~¥ D G(z~') D.

Proof Using the LP property of E(z) and F(z), we have
g

F(z) = "_(K_H'N)DF( —1)J
—(/\—I+'\)DG(: ) ( —l)
= :7'DG(z7):TTEETI
—“DG( YD~ K-IDE((z7")I

= :""DG(:"")DE(z).

Ior E(z) and F(z) to have FIR inverses, it is necessary and
sufficient that G(z) is FIR invertible and

G(z) = z_NDG(z_l)D. o

Let G(z Z' -0 A;z7"'. The above form of G(z) im-
poses mter( sting symmetric constraint.s on the matrices A,.

G(z) 2N DG(7_') 2D ZfVOA.z')D
= D(YN,A"V)D = D3 An—iz™)D

= Z::o(DAN—'D)z—l
= A, =DAxN_,D. (2)

2.2. GLBT Lattice Structure Based on the SVD

Asqume that M is even. In this casc, there are % symmetric

and & antisymmetric filters [3]. Furthermore, we know that
LLPPRFB exists for every integer I{ > 1 [3, 4], i.e., these
FB can be factorized by order-1 G(z). If N =1 in Eq.(2),
A, = DAyD. G(z) then takes the general form of G(z) =
Ao+z"'DAD. It can be proven that cvery aforementioned
non-trivial LPPRFB can be factorized using the following

X i U U
form for Ao [8]: Ao = ;_ v Vv ] . where U and V are
arbitrary % X % matrices. So, G(z) can be factorized as

follows

1 U4:2:7'U U-:"'U
G(z) =3 [ V_o:'V Vvirlv
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Since W and A(z) have trivial inverses, G(z) is invertible

if and only if ® is invertible, i.e. U and V are invertible.

The polyphase matrix of any cven-channel LPPRFB with

filter length L = KK M can be realized by a cascade of (i —1)
G, blocks and a zero-delay initial matrix Eg:

E(z) = GI\'—I(Z)GI\'—2(Z) - Gi(2) Eg (4)

The starting block E¢ has no delay clement. representing
LPPRFB of length M, and was often chosen to be DCT
[4. 5, 6]. General Ey satisfying Fq.(1) can be factorized as

E, = [ Uy Uy ]=L[U0 0 ] [I J ]

V2| VoI =V V2 0V J -1
For Eo to have PR, Uy and Vg again have to be invertible.
"This result should not come as a surprise. The factorization
is very similar to the GenLOT’s [4]; the only differencc here
1s that U, and V; do not have to be orthogonal. Now. the
difficulty arises: how do we completely characicrize these
‘y X % nonsingular matrices?

Recall that every invertible matrix has an SVD): U, =
U,oI, U1, where U, and U,; arc orthogonal matrices, and
T is a diagonal matrix with positive clements [1]. Thus, ®,
can be further factorized as

(I)_[U.O 0 ] [1‘, 0 ] [U.l 0 } 5)
v 0 Vo 0 A, 0 Va |’

The orthogonal matrices U,g, U;;. Vio. and V,; are param-
eterized by M%_—zl rotations each. The diagonal maltri-
ces I'; and A, are characterized by ¥ 3~ posilive parameters
each. The complete lattice sllucture is shown in ligure
2 (drawn for M = 8). lhe most general M x . GLBT
can be parameterized by LM parameters as expected from
LP systems. However, the S\ D parameterization in Eq.(5)
has three advantages: (i) exact reconstruction is guaranteed
structurally under a mild condition - as long as none of the
diagonal coefficients is quantized to zero: (i) SVD repre-
sentation avoids the costly matrix inversion problem in the
optimization process; (iii) it is much simpler o prevent the
matrices from being singular or near-singular.

It i1s also very easy to verify that all previously reported
LPPRFB’s lattice structurcs are special cases ol the new
GLBT lattice. For examples, the GLT design example in
[5] has M =8, K = 2, Ugo and Vi from the DCT, Up, =
Vo1 =To = Ao =1, and V| parameterized as a cascade of
block diagonal matrices. The LBT in [6] has M = 8 K =
2, Upo and Voo from the DCT, Uy = Vo = Ty = 1,
Ao = diaglv2 1 1 1], and U,, V; to be orthogonal.
When orthogonality is imposed, we get back GenLOT [4].
When M = 2, the lattice turns into a simplified form of
Type-A system lattice in [2]. Formal proofs of the lattice’s
completeness and minimality will be presented in [8].

3. DESIGN EXAMPLES AND GLBT
APPLICATION IN IMAGE CODING

Figure 3 presents several GL.BT design examples oblained
from nonlinear optimization of the new lattice coefficients
with various cost functions. The analysis banks are on top.
Designs in Figure 3(a), (b), and (d) are DC'T-based. While
increasing the GLBT length does not improve the coding
gain much, it helps in the casc of stopband atienuation
(where longer filters are desired) as testified in Figure 3(c).

One of the most popular applications of the GLB'T" is im-
age compression. Overlapping analysis filters reduce inter-
block redundancy, providing higher coding efficiency of the
transform coefficienis, while overlapping synthesis filters
whose ends decay asymptotically to zero climinate blocking
artifacts. Fach bank can now be designed appropriately.
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Flgure 2. Lattice structure for the GLBT.
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Figure 3. GLBT design examples (a) M = 8 [, = 16 optimized for coding gain, DC attenuation and mirror frequency

attenuation (b) M =8 L = 32 optimized for coding gain and DC attenuation

(¢) M =8 L = 32 optimized for analysis

stopband attenuation (d) M = 16 L = 32 optimized for coding gain, DC and mirror frequency attenuation.

For the case of M = 8 L = 16, GLBT optimized for pure
coding gain can attain 9.63 dB. However, we trade off 0.01
dB of coding gain in Figure 3(a) for high attenuation at
DC, near-DC, and mirror frequencies to ensure high visual
quality in the reconstructed images as well. The 16 x 32
GLBT in Figure 3(d) achieves an impressive coding gain of
9.96 dB. When the new transforms are incorporated into the
block-transform progressive coding framework described in
[9], the resulting GLBT-based embedded coders provide un-
rivaled objective and subjective performance as indicated in
Table 1 and Figure 4(b)-(d). I'or a smooth image like Lena
which the wavelet transform can sufficiently decorrelates,
the best wavelet-based embedded coder SPIHT [7] provides
a comparable performance. However. for a highly-textured
image like Barbara. 16 x 32 GLBT coder can provide a
PSNR gain of around 2.5 dB over a wide range of bit rates.
T'he visual recoustructed image quality is also superior: tex-
ture is beautifully preserved, blocking is completely elimi-
nated, and ringing is barely noticeable. Comparing to the
optimal 8 x 40 GenLOT in [9], the 8 x 16 GLBT in FFigure
3(a) already offers comparable performance at much lower
computational complexity. More objective and subjective
evaluation of GLBT-based progressive coders can be found
al  http://saigon.ece.wisc.edu/ "waveweb/Coder/indez.html
along with more details on the coding scheme.

4. CONCLUSIONS

We have presented in this paper a general, albeit minimal,
lattice structure for M-channel K A -length LPPREFB. The
novel lattice based on the SVD provides a robust imple-
mentation and a friendly design procedurc for all lapped
transforms with arbitrary integer overlapping factor K.
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Lena Goldhill Barbara

Comp. - 8 x40 8x 16 16 x 32 SPIHT 8 x 40 8x16 16 x 32 SPIHT 8 x40 8x 16 16 x 32
Ratio - Genl.OT | GLBT GILBT GenLOT | GLBT GLBT GenLOT | GLBT GI.BT

1:8 4041 40.43 40.35 40.43 36.55 36.80 36.69 36.78 36.41 38.08 37.84 38.43

1:16 37.21 37.32 37.28 37.33 3313 3336 3331 342 31.40 347 33.02 3394

1:32 3401 34.23 3414 34.27 30.56 30.79 30.70 30.84 27.58 29.53 29.04 30.18

.64 3110 316 3104 3118 2848 28.60 28.58 28.74 24.86 26.37 26.00 27.12

1:100 29.35 29.31 29.14 29.38 27.38 27.40 27.33 27.62 2376 24.95 24.55 25.39

11128 28.38 28.35 28.19 28.29 26,73 26.79 26.71 26.96 2335 24.01 2349 24.56

Table 1. Objective coding result comparison

(c) (d)

Figure 4. Embedded coding results of Barbara at 1:32 compression ratio (a) original image (b) SPIHT, 27.58 dB
(¢) embedded & x 16 GLBT, 29.04 dB (d) embedded 16 x 32 GLBT, 30.18 dB .




