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Abstract: We develop a minimum-noise-variance beam- 
former employing one electromagnetic vector sensor, capable 
of measuring the complete electric and magnetic fields in- 
duced by electromagnetic signals at one point,. Two types of 
signals are considered: one carries a single message, and the 
ot.her carries t.wo independent, messages simultaneously. The 
statme of polarization of the interference under consideration 
ranges from completely polarized t,o unpolarized. To ana- 
lyze the performance, we first, obtain explicit expressions for 
the signal to interference-plus-noise ratio (SINR) in t,erms of 
the parameters of the desired signal, int,erference and noise. 
Then we discuss some physical implications associated with 
the SIXR expressions. Our SIXR expressions provide a basis 
for effective interference suppression, as well as generation of 
dual-message signals of which the two message signals have 
minimum interference effect on one another. 

1. Introduction 

Direction-of-arrival (DOA) estimation and Leamforming 
are two common objectives of array processing. For applica- 
tions concerning electromagnetic (EM) waves, early work on 
DOA estimation and beamforming was based on scalar sen- 
sors, each of which provides measurements of only one com- 
ponent of t,he electric or magnetic field induced by the signals. 
Recently, [l], [2] proposed the use of EM vector sensors! mea- 
suring the complete electric and magnetic fields induced by 
t,he source signals, for DOA estimation. 

DOA estimation with EM vector sensors has attracted 
considerable research interest. A few studies of uniqueness 
in DOA estimates have been reported in [3]-[7]! and vari- 
ous DOA estimat.ion algorithms have also been suggested in 
[8]-[ll]! which have indicated the superiority of EM vector 
sensors over scalar sensors. In particular. it was revealed in 
14!- 1 S] that with just one EM vector sensor: the DOA’s of two 
or even three signals can be uniquely determined (7 or more 
appropriately spaced scalar sensors would he needed for the 
same purpose [12]). 

Based on the results reported in [4]-[6] on uniqueness in 
DOA estimates, EM vector sensors should handle more sig- 
nals in beamforming applicat,ions as compared with (the same 
number of) scalar sensors. In addition, the findings reported 
in :lj! [2] shed light on vector sensors’ ability to receive/reject 
signals based on both their polarizations and DOA’s. 

Beamforming with EM vector sensors. however, has re- 
ceived lit.tle attention. This motivates us t.o investigate the 
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performance of minimum-noise-variance (MNV) Learnformer 
j13] for EM vector sensors. We are concerned wit.h one 
EM vector sensor, and rest,rict. our investigation to scenar- 
ios where there exist one desired signal and one interference. 
.TWO t,ypes of signals are considered: one carries a single mes- 
sage, and the other carries t,wo independent messages simul- 
taneously [l]: [2]. We shall call the former single-message 
(SM) signal, and the latter dual-message (DM) signal. On 
the other hand, the interference under consideration can be 
a completely polarized (CP) signal, a partially polarized (PP) 
signal, or an unpolarized (VP) signal (the state of polariza- 
tion of a CP signal is const.ant while that of a PP or UP 
signal varies with time). 

We first obtain explicit expressions for the signal t.o 
interference-plus-noise ratio (SINR) in terms of the param- 
eters of the desired signal, interference and noise, for both 
SM signals and DM signals. Then we discuss some physical 
implications associated with the SINR expressions. In partic- 
ular, we deduce that for the two types of signals of interest.. 
the SINR rises with an increase in the separation between 
the DOA’s, and/or the polarizations, of the desired signal 
and the interference (scalar-sensor arrays do not have such 
propert.ies). Moreover, we identify strategies for effect.ively 
suppressing an interference with an EM vector sensor. The 
SINR expression for the SM signal that we derive also pro- 
vides a basis for generating a DM sibma in which t.he two 
message signals have minimum interference effect on one an- 
other. 

2. Data Model and Preliminary Discussion 

We focus on beamforming using one EM vector sensor 
in the presence of one desired signal and one interference. 
We shall adopt the data model proposed in [I], [2]. We first 
address desired signal of SM type and then of DM t,ype. 

2.1 Desired Signal of Single Message Type 

We shall use the subscript ‘s’ to indicate t.hat. a symbol 
is associated with the desired Shl signal, and ‘2’ t,o indicate 
that a symbol is associated with the interference. Let y.9(t) 

be the complex (phasor) sensor measurement obtained wit,h 
an EM vector sensor at time t, induced by a SM signal in the 
presence of an interference and additive noise, e(t). Then we 
have 

Ys(t) = a(e=)s,(t) + B(&,&)E,(t) + e(t), (2.1) 

where 

a(e) = B(&ti)Q(a)h(B), 8 = [@:yi!cY!D]“. 
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is t,he 

The first,, second and third terms on the right hand side 
of (2.1) correspond to measurements induced by, respectively, 
the desired signal. interference and noise. The parameters 
i E (-r: ~1 and ti E [-r/2, r/2] are respectively the azimuth 

and elevation of the signal, and LY E (-7rj2, n/2] and /3 E 
[-~/4,x/4] are polarization parameters referred to a5 the 
orientation angle and ellipticity respectively. The vector a(0) 
is the steering vector of an EM vector sensor associated with 
a SM signal with parameter 0. The variable s,(t) is the 
complex envelope of the desired signal and E,(t) the complex 
envelopes of the interference. 

The covariance of E,(t) determines the state of polariza- 
t.ion of the interference. Indeed? the interference covariance 

matrix, Ri h E(<,(t)<F(t)), where I”’ is the hermitian op- 

erator, can be expressed as (see Lemma 1 of [14]) 

Ri = $2 + a&,Q(a,)h(/3,)h”(,8JQ”(cri), (2.2) 

where I:! is the 2 x 2 identity matrix. The first term on the 
right hand side of (2.2) is the UP component with power cf,,, 

and the second term is the CP component with power u&. 

The interference is said to be CP if of,, # 0 but a?,, = 0, PP 

if gy,, # 0 and cf,,, # 0, and UP if ~f,~ # 0 but CT:,, = 0. 
The output of a beamformer is is(t) = wfyS(t), where 

w, E aJ6” is the weight vector. Suppose the DOA and polar- 
ization parameters of the desired signal are known, then, for 
t.he MNV beamformer, the weight vector is obtained through 
the following constrained minimization: 

w, = arg min w”RSw? subject to w”aS = 1, 
WCCF’X’ 

where R, = E(y,(t)yr(t)) is the data covariance matrix, 
and as denotes a(@,). The beamformer attempts to suppress 
all incoming signals except for the desired one with steering 
vector a,. 

2.2 Desired Signal of Dual Message Type 

We shall use the subscript ‘8 to indicate that a symbol is 
associated with the desired DM signal. The complex (phasor) 
sensor measurement obtained by an EM vector sensor at time 
t? induced by a DM signal in the presence of an interference 
and additive noise is given by: 

Yd(t) = a(ed,lbd,l(t) + a(od,Zbd,2(t) + B(4i,?Ll)t,(t) +(;!;i 

where 

ed,k = (6dr @dr ad,kr 8d.k). 

The first and second terms on the right hand side of (2.3) cor- 
respond to measurements induced by, respectively, the first 
and second message signals associated with the DM signal. 
The variables Sd.k(t) and a(ed,k), where k = 1,2, are re- 
spectively the complex envelope and the steering vector of 
the kt,h message signal. Not,e that the two steering vectors 

a(@d,l) and a(ed,2) correspond to t.he same DOA (o,i! %I,,) 
but. distinct polarizations ((Yd.1, &,I) and (ad.2. J,i,2) respec- 
tively. We shall propose in Section 4 an appropriate choice 
of (od.1: !Ijd,l) and (c~d.2~ Pd.2) that minimizes the interference 
effect on one desired message signal due to the ot,her. 

The outputs of a beamformer for the first and second 
message signals are? respectively, 

.ed.l(t) = W:,Iyd(t) and gd,2(t) = W:,2yd(t)! 

where Wd.l>Wd,2 E a:6x1 are the weight vectors. Note that, 
in order to optimize the recovering of the message signals. a 
specific weight vector is used for each message signal sepa- 
rately (i.e., WA.1 is not necessarily identical to wd.2). Suppose 
the DOA and polarization parameters of the desired signal 
are known, then, for the MNV beamformer: the weight. vec- 
tor for the kth message signal, where k = 1,2, is obt.ained 
through the following constrained minimization: 

where Rd = E(yd(t)yy(t)) is the data covariance matrix, 
and a&k denotes a(ed,k). 

2.3 Assumptions and Some Useful Measures 

The analyses to be carried out are based on the following 
assumptions: 

Assumption 1. The complex envelopes of the signals and 
noise are all zero-mean Gaussian random variables. 
Assumption 2. The DOA and polarization parameters of 
the desired signal are known. 
Assumption 3. The desired signal is uncorrelated with the 
interference. 
Assumption 4. The various components of the noise are 
uncorrelated among themselves, and also uncorrelated with 
both the desired signal and interference. 
Assumption 5. The powers of the electric noise and mag- 
netic noise are all equal to ~73. 

For a performance measure, we use the ratio of the output 
power of the desired signal to the output power of the inter- 
ference and noise (SINR). The SINR measure has been used 
as performance indicator for beamformers in many studies. 
In our case, for SM signal, the SINR is given by 

SINR, 5 
2 H !I 6, w, asas ws 

w:‘(R, - uza,af)wS ’ (2.4) 

where of = E(s,(t).s: (t)) is the power of the desired signal 
and ‘*’ is complex conjugate operator. For DM signal, the 
SINR for the kth message signal, i&k(t). is 

where ui k = E(Sd,k(t)Si,k(t)) is the power of the lath desired 
message bignal, k = 1,2. 

In this work, we shall obtain explicit expressions for 
SIN&, SINRdvl and SINRd,2, and investigate their char- 
acteristics in terms of the various parameters of t.he desired 
signal and the interference. 

To interpret the SINR expressions, we define the diner- 
ence between the polarizations of two signals, (cxl,al) and 



(02.32): t,o be Ai? the shorter arc 1engt.h joining p1 and pz> 
where PI and p2 are respect,ively the representations for t,he 
pnlarizations (~1. i31 j and (~2, {?2) on the Poincar6 sphere (see 
1151 for a detailed justification). Note t.hat Ai is relat.ed to 
((11. 31) and (02: R2) by 

co2 (A;/2) = Ih”(/32)Q”(az)Q(al)h(,$1)12. 

It can be shown t,hat SINR,, SIN&l and SINRd.2 as 
defined in (2.4) and (2.5) are invariant under coordinate ro- 
tations. Moreover, the separation between the DOA’s, the 
difference between the orientation angles of the desired sig- 
nal and interference, as well as the difference between the 
ellipticity angles of the desired signal and interference all re- 
main unchanged. Consequently, we shall assume hereafter 
that (d,:&) = (&Jd,l>tidJ) = (&,2>&.2) = (O:o) and ‘$i = 0 
(i.e.. the DOA of the desired signal is parallel to the z-axis 
and that of interference is on the z-y plane), and this would 
lead to considerable simplification of the analyses of SINR 
expressions. With such a set-up, the separation between the 
DOA’s of the desired signal and interference is simply d,. 

3. SINR for Desired Signal of Single Message Type 

For convenience, we shall refer to DOA separation as the 
separation between the DOA’s of the desired signal and in- 
terference, and denote it by y. Moreover, we shall refer to 
polarization difference as the difference between the polar- 
izations of the desired signal and interference. We have suc- 
ceeded in expressing SIN R, explicitly in terms of the DOA 
separation, t.he polarization difference, and the powers of the 
desired signal, interference and noise. This facilitates the de- 
duction of the dependence of SINR, on each of the above 
parameters. 

Theorem 1: The expression of SINR,, as given in (2.4), 
can be expressed as 

SINR, = a; 
2 (1+ cosy)2 

z - (US + u&J 

( 

2 

$+ 
2 Ui,$ cos 25 2 

e 2u;,, + a,2 + U?,” 
)) 

Proof: See [15j 

Clearly, SINR. increases with an increase in the desired 
signal’s power, ui, but decreases with an increase in the noise 
power? u& as well as an increase in the power of the CP (i.e., 
u&) or UP (‘. I e , us,) component of the interference. How- 
ever, the dependendies of SINR. on polarization difference 
and DOA separation are non-trivial, and these are established 
in the following corollaries. 

Corollary 1: If uy,, # 0 and y # K, then SINR, is an 
increasing function of A:. 

Corollary 2: If u&, # 0 or Al # n, then SINR, is an 
increasing function of y. 
Corollary 3: If uf,, = 0, then SINR, is independent of At. 

Corollary 4: SINR, attains the maximum value, 
SINRY’ = 2u;ju,2, when either y = R, or both Ai = A 
and u:,,, = 0 are true. Moreover, SINRTnaz simply takes the 
value of SINR, in the absence of interference. 

Corollary 5: For given (fixed) values of ug. a:,, -+ u:,,, uz. 
and T. the minimum of .SI!V R, is attained when AS: = 0 and 
a;,, = 0. 

Proof: See 1151. 

Remarks: 1. Corollary 1 means t.hat SINR,s generally 
increases with an increase in the the polarization difference 
A:. except for two special cases: (a) u:,, = 0: or (b) y = x. 
Note that case (a) corresponds to scenarios where the inter- 
ference is UP, and case (b) corresponds to scenarios where 
the DOA of the desired signal is exactly opposite to that. of 
interference. For case (a), the interference has no CP com- 
ponent and thus the polarization difference should not affect 
SINR, (see Corollary 3). On the ot,her hand, by Corollary 
4? SINR, for case (b) always attains the maximum value 
SINRF- regardless of the other signal parameters. 

2. Corollary 2 means that SINR, generally increases with 
an increase in the DOA separat.ion r, except for t,he case 
where both u:,~ = 0 and A: = r are true. For the ex- 
ceptional case, SINRTaS can always be attained regardless 
of the other signal parameters (see Corollary 4). Note that 

2 
u*,td = 0 means t,hat the interference is CP, and At = x 
means that the polarization difference is the largest possible. 
Such a polarization difference can be effected if the polariza- 
tions associated with the desired signal and interference sat- 
isfy (as, Bs) = (ai f X: -a). Physically, the two polarization 
ellipses associated with the polarizations (Q., &) and (Q,, &) 
have the same shape but have their major axes orthogonal 
to each other, and at the same time the directions of spin of 
the electric fields associated with the two polarizations are 
opposite. 

3. By Corollary 3! if the interference is UP! then it is not 
possible to increase SINR, by varying the polarization of 
the desired signal (a,? &). 

4. Corollary 4 means that SINR, attains the same maximum 
value, SINRF-! when either the DOA’s of the desired signal 
and the interference are opposite, or the interference is CP 
with largest possible polarization difference, 7r. In either case, 
SINR:- obtained is equivalent to the SINR, when there 
is no interference regardless of the interference’s power (i.e., 
the interference becomes completely ineffective). 

5. Corollary 5 means that, for any DOA separation, SINR, 

att,ains its lowest value when the interference is CP with po- 
larization being identical to that of the desired signal. 

The corollaries are potentially useful in some applications. 
For example, one can exploit the fact that SINR, increases 
with an increase in the polarization difference (Corollary 1) 
to effectively suppress an interference if the CP component 
of the int.erference is known. Indeed, for a fixed DOA sepa- 
ration y, one can obtain the largest SINR, by transmitting 
the desired signal with polarization such that the polariza- 
t,ion difference is the largest possible, i.e., Al = x. Clearly, 
if the interference is CP (i.e., a$, = 0), then SINR, at- 

tains SINRT:“” = 2u~/u,2, which is the value when there is 
no interference, regardless of the DOA separation and the 
interference’s power. 

4. SINR for Desired Signal of Dual Message Type 

To transmit a DM desired signal (consisting of two mes- 
sage signals), it is desirable that the interference effect of 



one message signal on the other would be minimal. Since 
the DOA parameters associated with t,he two message sig- 
nals are identical, it is possible to exploit the difference only 
in the polarization parameters to reduce the interference ef- 
fect. In this connection, Corollary 4 of Theorem 1 provides 
a good way for choosing the polarizations. Indeed, consider 
t.he scenario where there is no external imerference: and view 
one desired message signal as the desired CP signal. and the 
other as a CP interference. Then. by Corollary 4 of Theo- 
rem 1. bot.h SIN&r and SIA’V&2 attain their maximum 
values if the difference between the polarizations of the two 
message signals is equal to r (i.e., when extracting one mes- 
sage signal, there is theoretically no interference effect due 
to the other). Therefore: we shall assume hereafter that the 
polarizations of t,he two message signals are chosen in such a 
way that the polarization difference is x, meaning that the 
polarizations satisfy (od.1) ,&,l) = (od,z * x, -3d.z) (refer to 
Remark 2 of the corollaries to Theorem 1 for a relevant phys- 
ical meaning). Similar to the case of SM signal? we are able 
t.o express SIN&,r and SIN&,2 explicitly in terms of the 
DOA separation, the difference between the polarization of 
t.he first/second desired message signal and the interference, 
and the powers of the two desired message signals, interfer- 
ence and noise. 

Theorem 2: If (o,,i,&i) = (ad,2 f K, -@d,l), t.hen 

SINRd>k = $jk 

where 

Proof: See 115). 

Corollary 1: If u&, # 0 and 7 # x, then SIN&-k is an 

increasing function of A:,“, for k = 1,2. 

Corollary 2: If a:, # 0 or A:,” # A, then SIN&k is an 
increasing function of 7, for k = 1,2. 

Corollary 3: If uy,, = 0, then SIN&k is independent of 

A;,“. for k = 1,2. 
COrOlhry 4: SINRdsk attains the maxi- 
mum value, SINRTF = 2u&/u,2, when either y = r, or 

both Atvk = x and &, = 0 are true, for k = 1,2. Moreover, 
SINR~~’ simply takes the value of SIN&+ in the absence 
of interference. 
Corollary 5: For given (fixed) a:,,, uj,,, 012.~ +u&, u2 and 

7: the minimum of SIN&k is attained when Af’” = 0 and 
u:,~ = 0. for k = 1,2. 

Proof: See jI5]. 

The dependence of SIN&k on A, 2 
d’kt 79 ui,k, uZ, ui.p 

and u:,, as presented in Corollaries l-5 of Theorem 2 is ba- 

sically identical to that of SINR, on A:? y, oz. ua? (T:,~ and 

4,‘ as presented in Corollaries l-5 of Theorem 1. Therefore, 
the discussions cnncerning Corollaries l-5 of Theorem 1 in 
Section 3 are applicable to Corollaries l-5 of Theorem 2. 
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