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ABSTRACT 

Hypercomplex digital filters have an attractive advan- 
tage of the order reduction, however, also have a draw- 

back that multiplication requires a large amount of 
computations. This paper proposes a novel implemcn- 
tation of hypercomplex digital filters. By decomposing 
hypercomplex number multiplication, we show that it 
can be realized as two parallel complex multiplication- 
s. Using this technique, any types of hypercomplex 
digital filters can be implement.ed with less than half 
computations of the direct approach. 

1. INTRODUCTION 

Hypercomplex numbers arc generally defined as an ex- 
pansion of complex numbers[l]. .L\mong hypercomplex 
numbers, Hamilton’s quaternion is well-known, howev- 
er! Schiitte et al. suggest in [2] that quaternions are not 
suited for digital signal processing and they havvo pro- 
posed the modified version of quaternions as “reduced 
biquaternions” (RBs). 

Recently several researches concerning hypercom- 
plex coefficient digital filters have been reportsed [2, 3! 
4, 51. One of the most significant advantages of using 
hypercomplex numbers is the order reduction in digital 

filters. For example: the fourth order IIR digital filter 
is reduced to the first order one [2]. Another example 

is that the power complementary complex cocflicient 
filter set of the second order is composed of the first, 
order hypercomplex all-pass filter [3]. Furthermore, in 
[4, 51, hypercomplex cocficient, digital filters have been 
applied to various types of transfer functions. 

Despite of such interesting features, this number 
syst.em have a serious drawback tha.t multiplication is 
cost ineffective, i.e., one hypercomplex multiplication 
requires 16 real multiplications and 12 real additions. 
Due to this drawback, hypercomplex digital filters have 
not often been employed in digit,al signal processing. 

To overcome this problem, several approaches have 
been studied. On the multiplication of quatornions. it 

is known that ten real multiplications is needed in [6]. 
Similarly, Dimitrov et al. have shown that in an RB 

multiplication, the number of real multiplications can 
be reduced to ten or nine [7]. As another approach, 
Mizukami et al. have employed a residue number sys- 
tem (RNS) and have realized quarter size reduction [8]. 
However, in RNS multiple multiplication modules and 
auxiliary hardware modules such as residue to binary 
and binary to residue converters arc needed, which lead 
t.0 complex implementation. 

In this paper, we basically consider the above men- 
tioned hypercomplex number for digital signal process- 
ing, however, we simply call it a “bicomplex number” 
in connection with its derivation. In the following, bi- 
complex multiplication is reviewed and by decomposing 

the mult.iplication algorithrn, we show that it can be 
realized as two parallel complex multiplications. Fur- 

thermore, WC apply t,o hypercornplex coefficient digital 
filt.ers and eva1uat.e t.hc efficiency of our algorithm. 

2. BICOMPLEX NUMBERS 

Hypercomplex numbers are generally defined as the 
numbers whose components are combined with more 
than t.wo different imaginary units. Among hypercom- 
plex numbers? Harnilton’s quaternion is well known as 

4 = 41 + & +3’43 + kq4, (1) 

where (11, q2, q3, and q4 are real numbers and i? j, a.nd 
Ic are the imaginary units satisfying that 

i” + =p = -1 

and 

ij = -ji = k, jk = -kj = i, ki = -ik = j. 

However, it has been pointed out, in [2] that quater- 
nions are not suited for digit,al signal processing mainly 
because they arc not comrnutativc in multiplication. 



In this paper, we consider another number system 

as follows. Let al and az be complex numbers as 

a1 = a11 +ja12, 

a2 = a21 +ja22, (2) 

where j is the imaginary unit such that j” = -1. Then 
we consider 

A = al + ia = (~111 + jul2) + i(a21 + ja22), (3) 

where i is a different imaginary unit called a vector 
unit such that iz = -1. The number A is consequent- 
ly composed of four real numbers. We will call it a. 
“bicomplex number” hereafter. To avoid confusion, it 
should be noted that bicomplex numbers treated in this 
paper are substantially the same as RBs [2], which are 
derived from Hamilton’s biquaternions. As is reported 
in [2], bicomplex numbers or RBs are commutative in 
addition and multiplication, and so they can be applied 
to most of digital signal processing algorithms directly. 

3. MULTIPLICATION OF BICOMPLEX 
NUMBERS 

Given two bicomplex numbers A and B, 

.4 = nl + ia = (~211 + jal2) + i(a2l + ju22), (4) 

B = bl + ib2 = (bll + jblz) + i(b21 + jb22). (5) 

Multiplication of ,4 and B is defined as follows; 

C = A.B=B.A 

= cl + icp = (cl1 + jc12) + i(c21 + jc22), (6) 

where 

~11 = allbll - ad12 - wb21 + mb.: 

~12 = allbn + arzbll - azlbz - azbxr 

~21 = allbzl - wzb22 + axbll - a22bnr 

~22 = mlb2z + ad21 + whz + mzhl. 

In the direct computation, the number of arithmetic 
units amounts to 16 real multiplications and 12 real 

additions. 
From the result of the direct bicornplex multiplica- 

tion, let eir, &, Eli, and ?2i be 

21, = Cl1 + c22, 

e2r = Cl1 - c22, 

Eli = Cl2 - c21, 

is& = Cl2 + c21. 

Figure 1: Algorithm 1. 

By easy inspection, each variable is factorized as 

El, = (a11 + a,d(b,, + bzz) - (~2 - azl)(bn - bzl), 

t2r = (ml -ad@ 11 - W - (a12 + ml)@12 + h), 

hi = (~11 + a22)(b12 - b21) + (a12 - aal)(bll + b22), 

bi = (a11 -a22)(bl2 +b21) + (~12 +a2l)(bIl -b22). 

Similarly defining A and i as 

&lT = a11 + a223 

(52, = a11 - u22, 

iili = a12 - fJ21? 

62i = a12 + a217 

&r = bll + kn, 

br = bll - bm, 

&i = bl2 - b2l! 

bzi = h2 + b21, 

C can be simplified as 

^ ^ 
tl, = hl,.bl,. - hlibli, 

^ ^ 
i?2T = &2Tb2r - hzibzi, 

^ 

&i = C2r b2i + h2ib27. 

These equations arc the same as complex number mul- 
tiplications such as 

Ekr + j&i = (iikT + j6ki)(bkr + jhki) for k = 1,2. 

And finally each element of C is computed by 

Cl1 = (217 + E27)/2, 



Table 1: Comparison of computations per bicomplex 
multiplication 

1 Real mults. 1 Real adds. 

Direct method 16 12 

Method 1 8 16 
I 

Method 2 6 22 

Cl2 = (C2i + &i)/2, Furthermore, C is restored by 

Therefore, 

This procedure is shown in Figure 1. Traditionally 
complex multiplication requires four real multiplica- 
tions and two real additions. Or it is also known that 
complex multiplication is realized with three real mul- 
tiplications and five real additions as 

Here we call the former one the method 1 and the latter 

one the method 2. In the method 1, 8 real rnultiplica- 
tions and 16 real additions are required in total. And 

in the method 2, 6 real multiplications and 22 real ad- 
ditions are required. Table 1 shows this comparison. It 
is noted that a multiplication by l/2 can be treated as 
one bit shift under the assumption of binary operation, 
and so it is need not to be counted as an arithmet,ic 
unit. 

C=A@B=R-‘(;id), (11) 

where A 0 B denotes bicomplex addition, subtraction, 
or multiplication, and A o & denotes two parallel com- 
plex additions, subtractions, or multiplications. This 
means that if the input and the output of a hypercom- 
plex number system are transformed by R and R-‘, 
complex arithmetic can be used in the internal system. 
This property can reduce the complexity of hypercorn- 
plex number system. 

4. IMPLEMENTATION OF 
HYPERCOMPLEX DIGITAL FILTERS 

As a general model of hypercomplex digital filters, we 
assume that. the input and the output of the hypercom- 
plex number system are bicomplex numbers as 

Concerning bicomplex addition, C = .4 + B is de- 
fined as 

x(n) = {%(7&) +&2(n)} + i{x2l(n) + j,22(71)}, 

c = A+B=B+A 

= {(a11 + hl) + j(al2 + h2)) 

+ i{(m + h) + j(a22 + b22)}. (7) 

In this case, it can be easily shown that 

ekr •b j&i = (Gkr -i-j&i) i- (ikr i- jiki) for k = 1: 2. 

This equation suggests that a bicomplcx addition is 
also decomposed as two complex additions. 

Through the above observation, we have shown the 
efficient implementation of multiplication itself, howev- 
er, we can show more interesting property as follows. 

First we define the vector notations as 

A=[a11 a12 a21 a22 I’, 

Using vector-matrix representation, A and B ca.n be 
expressed by 

LRA, (8) 

&RB, (9) 

where 
10 0 1 
0 1-l 0 

Y(n) = {YII(~) +jy12(n)) + i{y2l(n) +jy22(n)}. 

As described in the previous section, bicomplcx arit.h- 
metic can be decomposed of two complex arithmetic 
with termination of the transform matrix. Therefore, 
if constant hypercomplex coefficients are modified by 
R in advance, bicomplex signal filtering can be pcr- 
formed by complex signal arithmetic. Figure 2 shows 
the proposed structure of hypercomplex digital filters. 
Csing this technique, bicomplex adders and multiplier- 
s can be replaced by two parallel complex adders and 
multipliers, respectively. Table 2 shows the comparison 
of components per one bicomplex multiplier. 

As an example, we give the first order hypercomplex 

digital filter[2], which is described as 

Y(n) = .4Y(n - 1) + C{X(n) - BX(n - l)}, (12) 

where A? B, and C are also bicomplex numbers. Since 
this filter is composed of three bicomplcx multipliers, 



x,,(n) u,*(n) 

x22(4 y&) 

x,,(n) Y 12(n) 

x2,(4 r*,(n) 

Figure 2: Proposed implementation of hypercomplex 
digital filter. 

Table 2: Comparison of constant coefficient bicomplex 
multipliers 

Real mults. Real adds. 

Direct method 16 12 

Method 1 8 4 

Method 2 6 10 

two bicomplex adders, and one bicomplex delay unit, 
in the direct implementation, total number of compu- 
tations per sample is 48 real multiplications and 44 real 
additions. In the proposed implementation, as a bicom- 
plex multiplier can be reduced to two parallel complex 

multipliers, in the case of the method 1, 24 real mul- 
tiplications and 28 real additions are required. If t.he 
method 2 is taken, only 18 real multiplications with 46 

additions are required. Table 3 summarizes this com- 
parison. Traditionally hardware complexity of rnulti- 
pliers is considerably larger than that of adders: so the 
proposed approach could reduce t,he t.otal complexity 
of the system to less than half of the direct rnethod. 

5. CONCLUSIONS 

We have proposed the computationally efficient imple- 
mentation of hypercomplex digital filters. By decom- 
posing hypercomplex nurnber multiplica.tion, we have 
shown that it is realized as two parallel complex mul- 
tiplications. Using this result, hypercornplex number 

Table 3: Compa.rison of components of first order hy- 
percomplex digital filters 

Real mults. Real adds. 

Direct method 48 44 

Method 1 24 28 

Method 2 18 46 

systems can be reduced to simple complex number sys- 
tems with termination of the transformer. As a re- 
sult, hypercomplex digital filters can be implemented 
with less than half computations of the direct approa.ch. 
This technique could be applied to any kinds of hyper- 
complex digital filters. 
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