COMPUTATIONALLY EFFICIENT IMPLEMENTATION OF HYPERCOMPLEX

TAT/7(TrM A

Ditxll

T

L r1

TAYT rmMTT OY

LED

Hisamicht Toyoshima

Department of Electrical Engineering, Kanagawa University
3-27 Rokkakubashi, Yokohama 221 Japan
E-mail: toyoQcc.kanagawa-u.ac.jp

ABSTRACT

Hypercomplex digital filters have an attractive advan-
tage of the order reduction, however, also have a draw-
back that multiplication requires a large amount of
computations. This paper proposes a novel implemen-
tation of hypercomplex digital filters. By decomposing
hypercomplex number multiplication, we show that it
can be realized as two parallel complex multiplication-
s. Using this te(‘hnique any types of hypercomplex
dicital
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computations of the direct approach.

1. INTRODUCTION

Hypercomplex numbers arc generally defined as an ex-
pansion of complex numbers[1l]. Among hypercomplex
numbers, Hamilton’s quaternion is well-known, howev-
er, Schiitte et al. suggest in [2] that quaternions are not
suited for digital signai processing and they have pro-
poqed the modified version of quaternions as “reduced

(RBs).
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Recently several researches concerning hypercom-
plex coefficient digital filters have been reported [2, 3,
4, 5]. One of the most significant advantages of using
hypercomplex numbers is the order reduction in digital
filters. For example, the fourth order IIR digital filter
is reduced to the first order one [2]. Another example
is that the power complementary complex coefficient
filter set of the second order is composed of the first
order hypercomplex ali-pass filter [3]. Furthermore, in
[4, 5], hypercomplex cocflicient digital filters have been
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Despite of such interesting features, this number
system have a serious drawback that multiplication is
cost ineffective, i.e., one hypercomplex multiplication
requires 16 real multiplications and 12 real additions.
Due to this drawback, hypercomplex digital filters have
not often been employed in digital signal processing.

To overcome this problem, several approaches have
been studied. On the multiplication of quaternions. it

is known that ten real multiplications is needed in [6].
Similarly, Dimitrov et al. have shown that in an RB
multiplication, the number of real multiplications can
be reduced to ten or nine [7]. As another approach,

Mizukami et al. have employed a residue number sys-
tem (RNS) and have realized quarter size reduction [8].
However, in RNS multiple multiplication modules and
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and binary to residue converters are needed, which lead
to complex implementation.

In this paper, we basically consider the above men-
tioned hypercomplex number for digital signal process-
ing, however, we simply call it a “bicomplex number”
in connection with its derivation. In the following, bi-
complex multiplication is reviewed and by decomposing
the multiplication algorithm, we show that it can be
realized as two paraliei compiex muitiplications. Fur-
thermore, we apply to hypercomplex coofﬁment digital
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Hypercomplex numbers are generally defined as the
numbers whose components are combined with more
than two different imaginary units. Among hypercom-
plex numbers, Hamilton’s quaternion is well known as

q=q1 +1iq2 + jigs + kg, (1)
where g1, g2, ¢3, and g4 are real numbers and 1, j, and
k are the imaginary units satisfying that

==kt =1
and
ij=—ji=k, jk=~kj=1i, ki=—ik=j.

However, it has been pointed out in [2] that quater-
nions are not suited for digital signal processing mainly
because they are not commutative in multiplication.



In this paper, we consider another number system
as follows. Let a; and ag be complex numbers as
a) = ay + jaiz,
az = az1 + jase, 2)

where j is the imaginary unit such that j2 = ~—1. Then
we consider

A =a; +iaz = (a1 + jaiz) + i(az + jag2), (3)

where i is a different imaginary unit called a vector
unit such that > = —1. The number A is consequent-
ly composed of four real numbers. We will call it a
“bicomplex number” hereafter. To avoid confusion, it
should be noted that bicomplex numbers treated in this
paper are substantially the same as RBs (2], which are
derived from Hamilton’s biquaternions. As is reported
in [2], bicomplex numbers or RBs are commutative in
addition and multiplication, and so they can be applied
to most of digital signal processing algorithms directly.

3. MULTIPLICATION OF BICOMPLEX
NUMBERS

Given two bicomplex numbers A and B,
A=a; +iaz = ((111 +j(112) + i(a21 + jazz), (4)
B = by +1by = (b1 + jbi2) + i(ba1 + jboa). (5)
Multiplication of A and B is defined as follows;

C = A-B=B-A
= ¢ +ic; = (c11 + jeiz) +ilcar + jeaz), (6)

where
c11 = anbyy — ayabyg — agibay + a22b22,

c12 = anbiz + aiz2bi; — az1baz — az2ba1,
Co1 = ar1b21 — G12beg + G21b11 — agzbiz,
C22 = a11bo2 + a12b3) + a1z + az2byi-

In the direct computation, the number of arithmetic
units amounts to 16 real multiplications and 12 real
additions.

From the result of the direct bicomplex multiplica-
tion, let é1r, é2r, C1i, and é;; be

Cir = C11 T C22,

Cor = C11 — C22,
C1i = C12 — €21,

C2; = C12 + C21.
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Figure 1: Algorithm 1.

By easy inspection, each variable is factorized as

1, = (a11 + a22)(b11 + ba2) — (a12 — a21)(b12 — ba1),

) (
é2r = (@11 — a22)(b11 — b22) — (a12 + a21)(b12 + ba1),
é1i = (a11 + ag2)(bi2 — ba1) + (@12 — a21) (b1 + b22),
é2i = (a11 — ag2)(bi2 + ba1) + (@12 + a21)(b11 — b22).

Similarly defining A and B as
41y = Q11 + 22,
Gor = a11 — Q22,
Gy = agp — aa1,
Go; = a1y + az1,
by, = b1y + baa,
by, = byy — b2,
b1i = b1z — bay,
byi = bi2 + b1,

C can be simplified as
éir = a1y — agibus,
Cor = Gorbay — G2iby;,
é1i = G1rbis + G1:b15,
i = Qarba; + Gaibay.

These equations are the same as complex number mul-
tiplications such as

Ckr + jéri = (Akr + Jars) (ber + jbys) for k =1,2.
And finally each element of C is computed by

c11 = (1r + é2r)/2,



Table 1: Comparison of computations per bicomplex
multiplication

Real mults. | Real adds.
Direct method 16 12
Method 1 8 16
Method 2 6 22

c12 = (i + €15)/2,
ca1 = (g — €14)/2,
a2 = (G1r — E27)/2.

This procedure is shown in Figure 1. Traditionally
complex multiplication requires four real multiplica-
tions and two real additions. Or it is also known that
complex multiplication is realized with three real mul-
tiplications and five real additions as

Ekr = bir(rr — Gri) + agi(ber — brs),

ki = byi(@rr + ki) + i (brr — bra)-

Here we call the former one the method 1 and the latter
one the method 2. In the method 1, 8 real multiplica-
tions and 16 real additions are required in total. And
in the method 2, 6 real multiplications and 22 real ad-
ditions are required. Table 1 shows this comparison. It
is noted that a multiplication by 1/2 can be treated as
one bit shift under the assumption of binary operation,
and so it is need not to be counted as an arithmetic
unit.

Concerning bicomplex addition, C = A + B is de-
fined as

C = A+B=B+ A4
{(a11 + b11) + j(ai2 + b12)}
+ i{(a21 + b21) + j(age + b22)}. (7)

In this case, it can be easily shown that
Gkr + Jéki = (Grr + Jari) + (brr + 5bas) for k = 1,2.

This equation suggests that a bicomplex addition is
also decomposed as two complex additions.

Through the above observation, we have shown the
cfficient implementation of multiplication itself, howev-
er, we can show more interesting property as follows.
First we define the vector notations as

A=[ay a2 an ax |,

A=[a, a by a7

Using vector-matrix representation, A and B can be
expressed by

A =RA, (8)
B = RB, (9)
where
1 0 0 1
01 -1 0
R=110 0 -1
0 1 1 0

Furthermore, C is restored by
C=R"C. (10)
Therefore,
C=A0B=R*(AcB), (11)

where A © B denotes bicomplex addition, subtraction,
or multiplication, and A ® B denotes two parallel com-
plex additions, subtractions, or multiplications. This
means that if the input and the output of a hypercom-
plex number system are transformed by R and R™*,
complex arithmetic can be used in the internal system.
This property can reduce the complexity of hypercom-
plex number system.

4. IMPLEMENTATION OF
HYPERCOMPLEX DIGITAL FILTERS

As a general model of hypercomplex digital filters, we
assume that the input and the output of the hypercom-
plex number system are bicomplex numbers as

X(n) = {z11(n) + jr12(n)} + i{z21(n) + jz22(n)},

Y(n) = {y11(n) + jy12(n)} + i{y21(n) + jyza(n)}.

As described in the previous section, bicomplex arith-
metic can be decomposed of two complex arithmetic
with termination of the transform matrix. Therefore,
if constant hypercomplex coefficients are modified by
R in advance, bicomplex signal filtering can be per-
formed by complex signal arithmetic. Figure 2 shows
the proposed structure of hypercomplex digital filters.
Using this technique, bicomplex adders and multiplier-
s can be replaced by two parallel complex adders and
multipliers, respectively. Table 2 shows the comparison
of components per one bicomplex multiplier.

As an example, we give the first order hypercomplex
digital filter[2], which is described as

Y(n) = AY(n— 1)+ C{X(n) - BX(n - 1)}, (12)

where A, B, and C are also bicomplex numbers. Since
this filter is composed of three bicomplex multipliers,
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Figure 2: Proposed implementation of hypercomplex
digital filter.
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Table 2: Comparison of constant coeflicient bicomplex
multipliers
Real mults. | Real adds.
Direct method 16 12
Method 1 8 4
Method 2 6 10

two bicomplex adders, and one bicomplex delay unit,
in the direct implementation, total number of compu-
tations per sample is 48 real multiplications and 44 real
additions. In the proposed implementation, as a bicom-
plex multiplier can be reduced to two parallel complex
multipliers, in the case of the method 1, 24 real mul-
tiplications and 28 real additions are required. If the
method 2 is taken, only 18 real multiplications with 46
additions are required. Table 3 summarizes this com-
parison. Traditionally hardware complexity of multi-
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proposed approach could reduce the total complex1 A
of the system to less than half of the direct method.

mentatlon of hypercomplex dlgltal ﬁlters. By decom-
posing hypercomplex number multiplication, we have
shown that it is realized as two parallel complex mul-
tiplications. Using this result, hypercomplex number

Table 3: Comparison of components of first order hy-
percomplex digital filters

Real mults. | Real adds.
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systems can be reduced to simple complex number sys-
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sult, hypercomplex digital filters can be implemented
with less than half computations of the direct approach.
This technique could be applied to any kinds of hyper-
complex digital filters.
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