
SPEECH CODING WITH NONLINEAR LOCAL PREDICTION MODEL 

Departnlont, of Elwtronics and Cornmllnicat,ion Engineoring~ 
South China Lnivc:rsitsy of Tdmology, Guarlg Zhou, 510641 P.R.China 

ABSTRACT 

A new signal process bawd on a nonlinear local predic- 

t.ion model(NLLP) is presented and applied to speech 
coding. With t.he same implement,ion. the speech cod- 
ing based on the SLLP gives improved performance 
compared to reference versions of the st,andard ITU- 
T G.728 and linear local scheme. The computabional 
effort.s for t,he NLLP analysis does not increase over 
the cowenbional linear prcdiction(LP). and t.he XLLP 
supplies better prediction performance over t.he LP and 
linear local prediction. 

1. INTRODUCTION 

It. has recent.ly bee11 proved that. the stat.e space based 
local predict,ion model is a better singal predict.or[2][7]. 

In speech coding, the linear local modeling, which is de- 
veloped from the useful linear predict,ion coding(LPC) 
technique wibh all pole aut,ogressive(AR) model, gives 
improved performance over comparative linear model[6]. 

The effective strategy for the nonlinear speech ~nodel- 
ing of t.his case involves fitting an AR model t,o the 
signal locally in a sbate space: that is: the model pa- 
rameters vary as a function of the state. This nonlinear 
model can be viewed as a problem of interpolating from 

t.he noisy samples, t.herefore the accurat,e model is ac- 
quired by some linear int,erpolating funct,ions. 

However: from t.he approximation viewpoint: the 
nonlinear interpolating functions are capable of obtain- 
ing more efficacious out.comes for the nonlinear speech 

signal. Furthermore, some nonlinear functions, e.g.! ra- 
dial biasis function: provide regularized solut.ions, and 
t.hen they can make the number of modeling parame- 
t.ers fairly low and guarantee the st,ability of the corre- 

sponding synthesis scheme[3]. For t,hc compubational 
efforts, the method supplied by [6] is a useful way to 
reduce the complexity of the linear local model and can 
also he used in the nonlinear local model. The other 
superi0rit.y of the nonlinear function is that, the t,otal 
compute amount is able t.o be reduced by cutt.ing down 
the number of t.he modeling paramet.ers. 

In t.his paper! the backwardly adapt.ive technique is 

used in speech coding wit.h a nonlinear local model and 
additional computational effort.s of t.he pat.tern mat.ch- 
ing is decreased by a little number of the model param- 
et,ers, as is dist,inguished from [3]: where the nonlinear 
funct.ion was used as a global model and the predict.or 
adapt.ation had been performed in a forward way. 

2. PREDICTION OF NLAR PROCESS IN 
STATE SPACE 

Let. 0 and \E be the maps in st.ate space !JY’! a broad 
class of system, including AR model and other gener- 
alizations of the AR model. can be represented in a 

common stat,e space form[2]: 

xk+l = O(Xk? Uk; k) (1) 

Yk = @(Xk: Uk: k) (2) 

where t.he n x 1 vector xk is t,he st,ate. the p x 1 vector 

uk is the input, and t.he m x 1 vector yk is t,he output. 
Generalizing the model t,o include nonlinear syst,em: 
while retaining the companion state variable st,ructure, 
leads to syst.ems described by a nth order nonlinear 
difference equation of the form: 

!/k+I = F(?/k:~k-l.‘.‘:Yk-n+l) +vk, (3) 

where F(.) maps %“ to 8: and l1.k is stational white 
noise. We refer to the process (3) as a nonlinear auto- 
gressive process( SL-AR). 

Ib is clear from (1 3), that. the state vector xk can 

be reconstructed from t.he observations of t,he scalar 

Xk = (llk-*,+l:“‘:Yk-I:Yk)7’. (4) 

Thus the minimum mean square error(MMSE) est.i- 
mate of yk+l given it,s entire signal liist.ory is: 

?ik+l = F(Xk). (5) 

Alt.hough F(x) is a part of the syst,em ~nodel. and 
therefore unavailable. the state dynamic of the system 



can be observed through 

:Yk+l = F(Xk) + U/T. (6) 

Thus given yk and recovering xk from (4): the sig- 
nal history re1”esent.s a set, of noisy samples of F(x), 

nonuniformly dist,ributed in state space. Consequently, 
the estimation problem for z/k+, can be regarded as a 
solution of interpolating F(x) from white noisy sam- 

ples. 
Based on the interploating viewpoint, t.he kernel- 

based strategies involving splines or radial basis func- 
Cons can be used to create a global approximabion of 
F(x)[2]. One benefit of such a scheme is that the model 
for F(x) can be precomput,ed, making signal predic- 
tion a simple function evalution. However the perfor- 
mance of this scheme depends crit,ically on t.he choice 
of the kernel, since rat.her strong assumpt.ions are im- 

posed on F(x) between the observations. and the global 
approximation requires great, amount. comput.ation and 
intensive convergence. Hence a philosophical approach 
which makes fewer assumptions about the behavior of 
the function bet.ween the samples and has little com- 
put.ation is using the local models. In a manner rem- 
iniscent, of vector cluantization, we can view the sig- 

nal as a codebook of pairs(state-vect.or, signal-value) 
Of the form(xk; Yk+, ). Because each codebook ent,ry 

must, satisfy (6): the prediction st.rategy is to use t.he 
present st.at.e of t,he syit~em xk t.0 ‘.look up” F(xk) in 
the codebook. Thus The me,thod for predicting yk+ 1: 
given y;: 0 5 i 5 k is[2][6]: (1) Form a codebook of 
pairs (xi? IJ;+~) from t.he signal history: (2) Select pairs 

(Xi: z/i+] ) from the codebook for Xi neighbouring on xk: 
(3) Fit a local model yi+ 1 s p(xk) tn the selected pairs, 

(4) Apply the local model bo oht.ain ii+, = p(xk). 

3. SELECTION OF LOCAL MODEL 

F(x) were approximated as t,he linear funct.ions near 
xk by[2][6][7]: as resulted in a linear local predict,ion 
model( LLP): which can be shown t.o be a generaliza- 
tion of the AR process and had good approximations. 
Unfort.unately the linear estimation solutions for F(x) 

sometimes exhibit unst,able behaviors due to the prob- 
lem of t,he singularities. Thus the singular value de- 
composit.ion or ot.her techniques has to be employed. 
which increases extensive comput,ation. 

Instead, if a nonlinear function is selected as the 
basis function, t,he local model becomes the universit,y 
of the ALAR model. Radial basis function(RBF) has 
been report.ed to be uniwrsial approximation capabil- 
it.y and a regularization form. Specially, the nonlinear 
local prediction model( SLLP) retains inherent adTan- 
tages of the RBF due to its nonlinear nature. 

The SLAR model based on RBF can be expressed 

by 
,,, 

where {cJ~} are t,he RBF: 1) . 11 is a norm(e.g., &-norm) 
in !J?‘? {ci} are the RBF cent.ers! {Xi,l; = 0: 1:. . $717,) 
are t.he weights of the linear combination and In. is the 

number of t.he RBF. It can be easily verified that, Gaus- 

sian R.BF CJ;(:C) = e~:p(-$), c? being the variance as- 
sociated t.o each RBF, makes the synthesis syst.em with 
this NLAR st.able. Hence t.he evaluat,ion 2/;+1 is: 

%,I = AI + ~Xi!Ii((( xi - ci II)? (8) 

i=l 

For the RBF, the est.imation accuracy is crucially 
governed by t.he number and position of the centers. 
In order to obtain the trade-off between the compu- 
t,ational efforts and prediction precision, t.hc orthogo- 
nal least. squares(OLS) learning algorithm[5]. which is 
a simple and efficient means for fit.ting RBF networks? 
is used to ret.rieve a small number of data points as the 
centers. For a special purpose: the OLS algorit.hm has 
the property that, each selected center maximizes t.he 
increment t.o the explained variance or energy of t.he de- 

sired output and suffers little numerical ill-conditioning 
problems[4]. 

4. SPEECH CODING WITH NLLP 

Like the LLP, the SLLP application to speech cod- 
ing has been impeded by t,wo major obstacles: i) the 

quanbization of the predict,or’s parameters, and ii) the 
prohibitive computational efforts. Here the first prob- 
lem is solved by applying it to a predictor backwardly 
adaptive speech coding algorithm: i.e.. ITU-T G.728 
LD-CELP[l]. Xs for th e second point, the use of a lo- 

cal model and relevant lit.tle number of centers reduce 
the comput.ational complexity. 

The standard coder does not use long-term predic- 
tor and the short-term predictor order is increased to 
50 bo compensate for the loss in speech quality. Since a 

local predict.or is optimized over neighborhood vectors 
t.hat, are close t.o the ‘%argeb” vector xk in t.he state 
space, which also includes t.hose vect.ors which are ap- 
proximat,ely an integral number of pit,ch period away. 

it has the ability t,o model long-term or pitch period 
correlations as well. Therefore the local model coding 
scheme need nob long-t.erm predictor either. 

The designed nonlinear local prediction speech cod- 
ing scheme is shown in Fig.1, which is little different 

from the LD-CELP except for t,he backwardly adaptive 
LP changing into the backwardly adapt,ive SLLP and 
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Figure 1: LD-CELP based on nonlinear local prediction 
model 

lacking percept,ual weighting filters. The predictor’s co- 
efficient.s are adapt,ed by performing KLLP analysis on 
bhe previously quantized speech, as is the same as the 
standard scheme. That is, the decoded speech(every 

subframe’s length XV = 5) constitutes analysis frame 
y;:1.=k-L/-1:..., k, where Lf is the frame length. 
The stat,e vectors Xi: i = k - Lk - 1. **. 5 k: Lk = L, - 
n+ 1: are formed from yi, and the :\‘k(i\‘k > n) nearest, 
neighbows of xk from Xi: i = k - Lk - 1:. . . : k - 1: are 
selected to conlpose i’,, pairs (Xj!Yj+l)?j = l:.*,:Yk, 
with which: the parameters in (8) can be achieved b> 
the OLS algorithm. In coding process, the fitted lo- 
cal predictor is used to predict. next subframe 6;; 1. = 

k-l-l,..* ! k+.%‘.V! instead of only ik+, in order to reduce 

the computational complexity while predict.ion gain de- 
crease little due t,o small XY. 

For this NL.LP analysis being comparable to the LP 

analysis: the number of the RBF cent,ers ‘m is chosen as 
4 and bhe state vector’s dimension n is 10: making the 
total number of the parameter 50. As proposed in [6]: 

t.he analysis buffer parameters LJ = 120 and :\‘k = 60 
are to reach acceptable computat.ional efforts and cod- 
ing accuracy. Since t,he st.atist,ics of the SLLI’ is differ- 
ent from t.hat of t.he LP, a t.rained excitation codebook 

designed using closed-loop analysis(l] is substituted for 
that, of the LD-CELP. As to the transmitted bit rat,c 
and algortihmic buffering delay are the same as those 
in the LD-CELP, which gives its low delay property 
and ldkbps channel rate. 

5. PERFORMANCE COMPARISIONS AND 
CONCLUSION 

5.1. Prediction Performance 

As an efictive predictor, the NLLP should give im- 
proved performance, that is, it can provide bett,er pre- 
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Figure 2: Comparisons of pit.ch period correlations 

diction gain and remarkably “whiter” residual. The 
one-step recursive prediction residuals and correspond- 
ing gains obbained in three cases(backward LP, LLP? 
KLLP)with t.he same number of the coefficients for one 
frame(30ms) speech sampled at 8kHz with 16b/sampe 

accuracy(al1 speech data used in this paper are got- 
t.011 by t.his means) are shown in Fig.3 as an illustra- 
hive example: where the LP is with Hamming window. 
both the LLP and the KLLP arc based on t,he ident.i- 
cal analysis frame style explained in Section 4: and the 

LLP analysis adopts a weighted cost function way[6]. 
Obviously the SLLP gives the best result. 

Fig.2 compares plots of the relative number of seg- 
ments(of length 160) of prediction residuals of three 
backwardly prediction schemes that have peak normal- 
ized autocorrelat,ion value(for lags between 20.- 140, and 
the analyzed speech is a segment of 48 seconds dat.a 
comprising of ten males and ten females) greater than 
different threshold values. as is a example to show that 
t.he local short-term prediction is capable of modeling 
long-term correlation. This method is introduced by [6] 

to illust,ratc the LLP’s capability modeling long-term 
dependency. The results shows the SLLI? scheme has 
more accuracy. 

5.2. Coding Performance 

Because the perceptual weighting to the nonlinear pre- 
dicbion filter need studying further, a slight.ly modified 
version of the G.728 LD-CELP is done to make the 
comparisons more meaningful. For example, the per- 
ceptual weighting and post filtering in the LD-CELP 
are removed: decreasing the signal to noise ratios(SSR.s) 
of bhe coding to a small extent. 
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Figure 3: Comparisons of 3 cases’ prediction using a 
frame speech 

The result,s of reconstruct,ed speech waveform and 
SXRs 1vit.h t,he same frame speech for three schemes are 
presented in Fig.4, where the backwardly LLP coding 
scheme is based on [6]. Th e results clcaly show that 

the reconstruct,ed speech using the proposed approach 
provides t.he hcsb approximation to the actual speech 
signal. 

Using the continuous 48s speech t,o compare coding 
performance? the same conclusion can be obtained t,hat, 

t.he SSR. of the backward SLLP is 11.23dB: which is 
an improvement of 0.4dB over the LLP and O.‘idB over 
bhe LP. Meanwhile. during the coding procedure. the 
ill-posed occured in the KLLP is three t,imes: less than 
t.hat in the LLP(eight times), which make the SLLP 

scheme have a bet.t,er performance as well. 

5.3. Conclusion 

Speech signal has powerful nonlinearities and “locaY 
properties, hence the NLLP based on t,he st,ate space 
will be a more fine speech model. The practice of ap- 
plying it, to the speech coding shows that, alt.ernative 
versions of state based local predict.ion suit.ed for lower 

rate speech coding may have a significant impact in 
fut.ure speech coding algorithm. 

Recotstmcted SpdLh from bac&rd adaotit:NLLP 
using the same frame original speech, SN’R = 15.3dB 

Reconstmctzd Speech frd: backward iiaptive LLP?NR = 

Reconstructed Speech from backward adaptive LP , SNR = 1232dB 

Figure 4: Comparisons of rcconst,ruction performance 
wit,h 3 coding schemes using bhe same frame speech 
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