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ABSTRACT 

A new framework is proposed to integrate the various 
constraints, both local and global, that are present in 
the language. Local constraints are captured via n- 
gram language modeling, while global constraints are 
taken into account through the use of latent semantic 
analysis. An integrative formulation is derived for the 
combination of these two paradigms, resulting in sev- 
eral families of multi-span language models for large 
vocabulary speech recognition. Because of the inher- 
ent complementarity in the two types of constraints, 
the performance of the integrated language models, as 
measured by perplexity, compares favorably with the 
corresponding n-gram performance. 

1. INTRODUCTION 

As is well known, the performance of a large vocabulary 
speech recognition system is heavily influenced by the 
predictive power of its language modeling component. 
In the past decade, the n-gram paradigm has steadily 
grown in popularity, and its various implementations 
are now applied as a matter of course to discriminate 
between different strings of n words. Still, it remains 
extremely challenging to go beyond, say n 5 4, with 
currently available databases and processing power [l]. 
This imposes an artificially local horizon to the lan- 
guage model and thereby curtails its contribution to 
the recognition process. Fundamentally, of all the con- 
straints present in the language, the n-gram approach 
is able to capture only the local ones. 

Taking more global constraints into account has tra- 
ditionally involved a paradigm shift toward parsing and 
rule-based grammars, such as are routinely and success- 
fully employed in small vocabulary recognition applica- 
tions. This approach solves the locality problem, since 
it typically operates at the level of an entire sentence. 
Unfortunately, it is not (yet) practical for large vocab- 
ulary recognition, which is precisely why the n-gram 
framework was so widely adopted in the first place. 
This has motivated further investigation into the ex- 

traction of suitable long distance information without 
resorting to a formal parsing mechanism. 

One such attempt was based on the concept of word 
triggers [2]. Unfortunately, trigger pair selection is 
a complex issue: different pairs display markedly dif- 
ferent behavior, which limits the potential of low fre- 
quency triggers [3]. Still, self-triggers seem to be par- 
ticularly powerful and robust [2], which underscores the 
desirability of exploiting correlations between the cur- 
rent word and features of the document history. 

This observation led the author to explore the use of 
latent semantic analysis (LSA) for such purpose [4], [5]. 
In some respect, the LSA paradigm can be viewed as 
an extension of the word trigger concept, where a more 
systematic framework is used to handle the trigger pair 
selection. In [4], LSA was used for word clustering, 
and in [5], for language modeling. In both cases, it 
was found to be suitable to capture some of the global 
constraints present in the language. 

This paper, building on the results of [4] and [5], 
proposes several families of multi-span language models 
which leverage both the n-gram paradigm and the LSA 
framework. The paper is organized as follows. In the 
next section we review the salient properties of LSA- 
based statistical language modeling. In Section 3, we 
discuss various smoothing schemes based on clustering 
in the LSA space, along with the resulting trade-offs in 
predictive power. Section 4 addresses the integration 
of this framework with conventional n-gram language 
modeling. Finally, in Section 5 a series of experimental 
results illustrates some of the benefits associated with 
the integrated language models. 

2. LSA LANGUAGE MODELING 

Let V, IV] = M, b e some vocabulary of interest and 
‘T a training text corpus, comprising N articles (docu- 
ments) from a variety of sources. (Note that this im- 
plies that the training data is tagged at the document 
level, i.e., there is a way to identify article boundaries. 
This is the case, for example, with the ARPA North 



American Business (NAB) News corpus [6] .) Typically, 
M and N are on the order of ten thousand and hundred 
thousand, respectively; 7 might comprise a hundred 
million words or so. 

The LSA approach defines a mapping between the 
sets V, 7 and a vector space S, whereby each word wi 
in Y is represented by a vector ui in S and each doc- 
ument dj in 7 is represented by a vector vj in S. For 
the sake of brevity, we refer the reader to [4], [5] for fur- 
ther details on the mechanics of LSA, and just briefly 
summarize here. The first step is the construction of a 
matrix of co-occurences between words and documents, 
W. This matrix W is accumulated from the available 
training data by simply keeping track of which word 
is found in what document. In marked contrast with 
n-gram modeling, word order is ignored. 

The second step is to compute the singular value de- 
composition (SVD) of W. The left singular vectors in 
this SVD represent the words in the given vocabulary, 
and the right singular vectors represent the documents 
in the given corpus. Thus, the space S sought is the 
one spanned by the singular vectors resulting from the 
SVD. An important property of this space is that two 
words whose representations are “close” (in some suit- 
able metric) tend to appear in the same kind of docu- 
ments, whether or not they actually occur within iden- 
tical word contexts in those documents. Conversely, 
two documents whose representations are “close” tend 
to convey the same semantic meaning, whether or not 
they contain the same word constructs. Thus, we can 
expect that the respective representations of words and 
documents that are semantically linked would also be 
“close” in the LSA space S. 

The third step is to leverage this property for lan- 
guage modeling purposes. Let wg denote the word 
about to be predicted, and H,-l the admissible his- 
tory (context) for this particular word, i.e., the current 

document up to word ~~-1, denoted by c&-l. Then the 
associated LSA language model probability is given by: 

Pr(w,lH,-1,S) = Pr(ql&-11, (1) 
where the conditioning on S reflects the fact that the 
probability depends on the particular vector space aris- 
ing from the SVD representation. 

In this expression, Pr (w,&-1) reflects the “rele- 
vance” of word wug to the admissible history. As such, 
it will be highest for words whose me_aning aligns most 
closely with the semantic fabric of d,-l (i.e., relevant 
“content” words), and lowest for words which do not 
convey any particular information about this fabric (e.g., 
“function” words like the). Since content words tend 
to be rare and function words tend to be frequent, this 
will translate into a relatively high perplexity value. 
Hence, the model (1) will likely exhibit a rather weak 
predictive power. This provides some motivation for 
looking at various smoothing possibilities. 

3. LSA SMOOTHING 

The fairly low dimension of the space S opens up a va- 
riety of clustering opportunities. The nice thing about 
such clustering is that, fundamentally, it takes the global 
context into account, as opposed to conventional n- 
gram-based clustering methods which only consider col- 
locational effects. Thereafter we illustr%te smoothing 
based mostly on word clustering; see also [7] for an 
illustration of document clustering. 

Since the matrix I/I/ embodies, by construction, all 
structural associations between words and documents, 
it follows that, for a given training corpus, W WT 
(where ’ denotes matrix transpose) characterizes all 
co-occurrences between words. Thus, the extent to 
which words wi and wj have a similar pattern of occur- 
rence across the entire set of documents can be inferred 
from the (i, j) cell of W WT. From the SVD formal- 
ism, it follows that this can be characterized by taking 
the dot product between the ith and the jth row of the 
matrix US, namely UiS and ujS [4]. 

In other words, how “close” ui is to uj in the space 
S can be characterized by the natural metric: 

Ii(Ui, Uj) = COS(UiS, UjS) = 

UiS2UT 

ll”iSll ll”jSII ’ (2) 

for any 1 5 i,j 5 M. Once this metric is specified, it 
is straightforward to proceed with the clustering of the 
vectors ui using any of a variety of algorithms [8]. 

Since the number of such vectors is relatively large, 
it is advisable to perform this clustering in stages, us- 
ing, for example, K-means and bottom-up clustering 
sequentially [4]. Tl le result of this process is a set of 
word clusters ck, 1 5 k 5 Ii. A similar reasoning leads 
to a set of document clusters De, 1 5 e 2 L, which 
independently partitions the space S. These sets em- 
body two knowledge layers on top of the vector space 
representation derived from LSA. These layers charac- 
terize a number of semantically homogeneous regions 
in the space S, corresponding to sub-vocabularies and 
sub-topics, respectively. 

At this point, we can enhance the language model 
(1) by taking advantage of either or both of the knowl- 
edge layers just uncovered. In that sense, clustering 
essentially acts as a smoothing mechanism by leverag- 
ing a more flexible mixture framework. In the case of 
word clusters, for example, the right hand side of (1) 
can be expanded as: 

Pr (wpl&-l) = 2 Pr (Wplck) Pr (Ck&-1) . (3) 

k=l 

in the case of document clusters, this becomes: 

Pr (w,ld,-1) = 5 Pr (weI&) Pr (&l&-1). (4) 
e.=l 



Finally, when the two layers are considered simultane- 
ously, we get, after approximation for tractability: 

Pr (w,]&-~) = 

k=l t=l 

In these expressions, probabilities like Fr(w,lCk) de- 
pend on the “closeness” of w,, relative to the centroid of 
word cluster Ck, and can therefore be obtained with the 
help of (2). In contrast, probabilities like Pr(ck]&r) 
are qualitatively similar to the right hand side of (1) 
and can therefore be obtained as in [5]. 

The behavior of the model (3) depends on the num- 
ber of word clusters defined in the space S. Generally 
speaking, as that number increases, the contribution of 
Pr(w,]Ck) tends to increase, because the clusters be- 
come more and more semantically meaningful. By the 
same token, however, the contribution of Pr(Ckldg-r) 

for a given c&r tends to decrease, because the clus- 
ters eventually become too spe_cific and fail to reflect 
the overall semantic fabric of d,-1. These two trends 
have the net effect to decrease perplexity at first, and 
then increase it as the number of classes continues to 
increase. Thus, there exists an optimal cluster set size 
where perplexity is minimized. Similar observations 
can be made for the models (4) and (5). 

4. INTEGRATION WITH N-GRAMS 

The above provides a way to handle some of the global 
constraints in the language. To obtain a multi-span 
language model, it remains to combine them with local 
constraints, such as provided by the n-gram paradigm. 
Obviously, the goal of the resulting integrated approach 
is to leverage the benefits of both. 

The integration can occur in a number of ways, such 
as straightforward interpolation, or within the maxi- 
mum entropy framework [3]. In the following, we de- 
velop an alternative formulation for the combination 
of the n-gram and LSA paradigms. The end result, in 
effect, is a modified n-gram language model incorpo- 
rating large-span semantic information. 

To achieve this goal, we need to compute: 

Pr (w,]H,-1) = Pr (wp&l’,, Hi!!,), (6) 

where the history H,-1 now comprises an n-gram com- 

ponent (Hi”_), = w~-1wg-2.. .wpmn+r) as well as an 

LSA component (Hi!, = r&-r). This expression can 
be rewritten as: 

Pr(wqlHq--l) = 
Pr (wq, $!,IH~C),) 

C Pr (Wi, Hi!,]H61),) ’ (7) 

UJU,EV 

where the summation in the denominator extends over 
all words in V. Expanding and re-arranging, the nu- 
merator of (7) is seen to be: 

Pr (w,, $?,IHpl) 

= P~(w,IH~“_),)P~(H~‘)~~w(,I~(“)) q-1 
= Pr (wq]wq-iwq-z . . . wqmn+i) - 

. Pr (dq--l(wqwqlrwq--2.. .wqmn+l). (8) 

Now we make the assumption that the probability of 
the document history given the current word is not 
affected by the immediate context preceding it. This 
reflects the fact that, for a given word, different syn- 
tactic constructs (immediate context) can be used to 
carry the same meaning (document history). This is 
obviously reasonable for content words, and probably 
does not matter very much for function words. As a 
result, the integrated probability becomes: 

Pr (wqlHq-l) = 

Pr (wqJwq-iwq-2.. .wq-+r) Pr (&-llWq) 
C Pr(WiIWq-lWq-? wy-n+l)Pr(Jq-llWi) (‘I . . . 

W,EV 

Note that, if Pr (d,-1 ]wq) is viewed as a prior proba- 
bility on the current document history, then (9) simply 
translates the classical Bayesian estimation of the n- 
gram (local) probability using a prior distribution ob- 
tained from (global) LSA. 

5. PERFORMANCE 

Performance was evaluated on the WSJO part of the 
NAB News corpus. This was convenient for compar- 
ison purposes since conventional bigram and trigram 
language models are readily available, trained on ex- 
actly the same data [6]. The training text corpus 7 was 
composed of about N = 87,000 documents spanning 
the years 1987 to 1989, comprising approximately 42 
million words. In addition, about 2 million words from 
1992 and 1994 were used for test purposes. The vo- 
cabulary V was constructed by taking the 20,000 most 
frequent words of the NAB News corpus, augmented by 
some words from an earlier release of the Wall Street 
Journal corpus, for a total of M = 23,000 words. 

We performed the singular value decomposition of 
the matrix of co-occurrences between words and docu- 
ments using the single vector Lanczos method [9]. Over 
the course of this decomposition, we experimented with 
different numbers of singular values retained, and found 
that R = 125 seemed to achieve an adequate balance 
between reconstruction error (as measured by Frobe- 
nius norm differences) and noise suppression (as mea- 
sured by trace ratios). 



Using the resulting vector space S of dimension 125, 
we constructed the direct model (1) and combined it 
with the standard bigram, as in (9). We then measured 
the resulting perplexity on the test data, and found 
a value of 147. This result is to be compared with 
the baseline results obtained with the standard bigram 
and trigram language models of [6], found to be 215 
and 142, respectively. Thus, compared to the standard 
bigram, we obtained a 32% reduction in perplexity with 
the direct integrated model [5], which brings it to the 
same level of performance as the standard trigram. 

We then investigated the effect of smoothing. Word 
and document clustering were performed using the two- 
level procedure (K-means and bottom-up clustering) 
described in Section 3, and related classes were merged 
to create cluster sets of different size. For each cluster 
set size (or combination thereof), we measured perplex- 
ity as before. In all cases, a perplexity minimum was 
obtained for a particular size of the cluster set. 

In the case of word clustering, the perplexity min- 
imum was equal to 106 and was reached for a word 
cluster set size K = 100. This is to be compared 
with the perplexity associated with li = 23,000 clus- 
ters, which, as predicted earlier, was 147, i.e., the same 
value as obtained using (1). This important difference 
in perplexity illustrates the smoothing benefits brought 
about by clustering. Words related to the current doc- 
ument contribute with more synergy, while unrelated 
words are bett,er discounted. This, in turn, causes per- 
plexit,y to drop. Conversely, when Ii is too small, too 
much smoothing is introduced and information gets lost 
in the process! causing perplexity to edge up. 

Document clustering exhibits the same general be- 
havior, with two notable differences. First, the mini- 
mum perplexity was somewhat higher (116). This in- 
dicates that, clustering documents may not be as pow- 
erful as clustering words, in the sense just described. 
Second, the minimum was attained for a smaller size 
(L = 1) of th d e ocument cluster set, and perplexity in- 
creased faster away from this value. This may perhaps 
reflect the fact that it is more difficult to achieve se- 
mantic homogeneity at the document level than at the 
word level. Alternat.ively, it may be an artifact of the 
document collection, which arguably is already quite 
homogeneous to begin with. 

With both word and document clustering, the best 
results were obtained for a word cluster set size K = 
100 and a document cluster size L = 1. In that case 
the perplexity minimum was equal to 102. Similar com- 
ments apply here as well. 

Thus, the perplexity values obtained with the best 
(smoothed) integrated bigram/LSA language models 
(102-106) are about 50% better (respectively, 25% bet- 
ter) than that obtained using the standard bigram (re- 
spectively, trigram) language model. We conclude that 
the new integrated language models are quite effective 

in combining global semantic prediction with the usual 
local predictive power of the bigram language model. 
In addition, we expect that much of the reduction in 
perplexity observed at the bigram level would carry 
over to a combined trigram/LSA language model. 

6. CONCLUSION 

We have described a new approach to the integration of 
the various constraints, both local and global, that are 
present in the language. This approach exploits the 
complementarity between n-grams, which inherently 
rely on syntactically-oriented, short-span relationships, 
and LSA language models, which tend to capture se- 
mantically oriented, large span relationships between 
words. To harness this synergy, we have derived an 
integrative formulation to combine the two paradigms. 
Clustering in the LSA space was explored both at the 
word level and at the document level, and was found 
to be beneficial for smoothing purposes. All of the re- 
sulting multi-span language models were shown to sub- 
stantially outperform the associated standard n-grams 
on a subset of the NAB News corpus. 
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