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ABSTRACT 

In this paper, we first discuss two approaches for designing 
complex wavelet packets which can be used as orthogonal 

carriers for modulations like QAM and PM, and then com- 
pare the performance of the wavelet packet based modu- 

lation scheme with that of discrete multitone modulation 
using DFT bases. The results show that the wavelet packet 

based scheme yields lower average bit error probability com- 
+red to the DFT based scheme. The improved perfor- 

marie of the wavelet packet based scheme is because of 

:he spectrally contained nature of the wavelet packet bases 
which are under the control of the designer. 

1. INTRODUCTION 

In multicarrier modulation, the channel is partitioned into 

a number of subchannels. each with its own associated ba- 

sis. Discrete multitone modulation (D&IT) uses DFT bases, 
which exhibit desired orthogonality. However, for these 

bases, the stopband attenuation is very poor and overlap of 
subchannels is high thereby resulting .in poor performance 
for the channels that introduce distortion. 

Any complex multicarrier bases, to be used for multi- 

carrier modulation, should exhibit the desired orthogonal- 
ity. Further, the real and imaginary parts of the complex 

bases should be spectrally similar and also orthogonal to 

each other. One such design method based on combined 
sine and cosine modulation has been described in [4]. How- 
ever, the design contains too many constraints resulting in 
poorer stopband attenuation. In this paper, we first present 
two methods of designing complex multicarrier bases using 

cosine modulated filter bank. The motivation for using the 

cosine modulated filter bank is that there exists fast algo- 
rithm such as fast DCT [l] for implementing the filter bank. 

Next, we compare the performance of the wavelet packet 

based modulation scheme with that of discrete multitone 
modulation using DFT bases. 

2. METHODS OF DESIGNING COMPLEX BASES 

Before discussing the methods, we introduce the notation: 
Bold faced upper and lower case letters denote matrices and 

vectors, respectively. BT, B’ and B’ represent transpose, 
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Figure 1: M-band modified cosine modulated filter bank 

conjugate and conjugate-transpose of B. B(t) = H’(l/z’), 

I is the identity matrix, J(n) is the unit impulse function, 

z(n) * y(n) denotes convolution of z(n) and y(n), F(r) is 

z-transform of f(n) and E is the expectation operator. 

2.1 Method 1 

We first design an &f-band (J4 even) cosine modulated fil- 

ter bank [1,3] h=(z) = [HO(Z) HI(Z) ... H,M--I(Z)]. Let 
E(z) denote the polyphase matrix of the filter bank. Then 
h(z) = E(z)e(z) where e=(z) = [l 2-l . s. z-~+‘]. The or- 

thogonality of the bases (i.e., the impulse responses) cor- 

responding to the cosine modulated filter bank follow from 
the fact that E(z) is paraunitary. 

To get a pair of bases in the same band, we generate a 

modified filter bank h’=(z) = [Hi(t) H;(tj . . . Hbsl(.z)] 
as shown in Fig. 1. The modified filter bank can be repre- 

sented as 

where 

h’(z) = Rh(z) = RE(z)e(z) 0) 

R=[!‘!;i] (2) 

The polyphase matrix of the new filter bank, E’(z), is RE(r). 
Since RTR = 21, we have 

E’(z)E’(z) = fi(z)R=RE(z) = ERIE = 21 (3) 



Thus, E’(z) is paraunitary, which implies that the bases 

corresponding to the modified filter bank satisfy the orthog- 
onality relation 

xh;(n)hl(n+rM) = 26(k-1)6(r), 0 < k,l 5 M-l (4) 
n 

where r is an integer. The bandwidth of the modified fil- 

ters is twice that of the original cosine modulated filters. 
They are spectrally similar in pairs, at least in the pass- 

band. The spectral similarity of a pair, for 2 pairs of filters, 
is shown in Fig. 2. From the filt.ers so generated, we form 
complex bases with the pair of bases corresponding to the 

filters in the same band as the real and imaginary parts. 

We thus obtain M/2 complex bases from M-band cosine 

modulated filter bank.. Now, to get real output from the 

complex multicarrier modulator, we require a second set of 
M/2 complex bases that are conjugates of the M/2 bases 
obtained as above. The M complex bases are: 

fk(n) = hik(n) + hk+lcn) (5) 

fM-l-k(n) = hik(n) - jhbk+l(n) (6) 

for 0 5 k 5 M/2 - 1 and 0 5 n 5 L where L is the length 

of the prototype filter. 

2.2 Method 2 

In this method, we first design an M/a-band cosine mod- 
ulated filter bank. We know that the impulse responses of 

these filters are orthogonal to their rM/2 shifted versions. 
Let the bases corresponding to this bank be denoted by 
h;‘(n), 0 5 Ic 5 M/2 - 1. Then, we form the complex bases 
as follows: 

fkcn) = h:(n) + jhy(n - M/2) (7) 

fhf-l-k(n) = hi(n) - jhz(n - M/2) (8) 

for 0 5 k _< M/2 - 1 and 0 5 n < Li + M/2 - 1 where 

Li is the length of the prototype filter. It is now evident 
that the real and imaginary parts of these complex bases 

are spectrally identical and orthogonal. 

2.3 Comnarison of Different Bases 

The amplitude responses of the Fourier transform of the real 
and imaginary parts of the DFT bases differ significantly in 
both the passband and stopband. Also, the stopband atten- 
uation is very poor, and hence? overlap of the subchannels is 

very high. On the other hand, in the case of wavelet packet 

bases, the amplitude responses corresponding to real and 
imaginary parts are almost same in the passband, and the 

attenuation in the stopband is much higher resulting in less 

overlap of the subchannels other than immediate neighbors. 

Note that the real and imaginary parts of the complex base, 

designed by Method 2, are spectrally identical. However, 

for the same prototype filter length as in Method 1, i.e., 
L = LI, the stopband attenuation is less in Method 2 and 
also the length of the base in Method 2 is longer by M/2. 
The longer length means more computation. 

frequency (radians) 

Figure 2: Frequency responses of the modified filters for 

M = 16 and L = 64 (--H;(z), - - H;(r), - + -H;(z) and 

. . . H;(z)). 

3. MULTICARRIER SYSTEM 

Consider the multicn-ier system shown in Fig. 3. {s,,,(t)}, 
C(z) and W(z) represent input complex symbols, channel 
and pre-detection equalizer, respectively. For the modulator 

output to be real, the input symbols should satisfy the re- 
lation s,v-,,,-i(n) = s;(n) for 0 5 m 5 M/2 - 1. (F,,,(r)} 
correspond to IDFT bases for the DMT case and complex 

wavelet packet bases given in (5) or (6) ((7) or (8)) for dis- 
crete wavelet multitone case. The rnth filter in the receiver 
is given by FL(z) = z-~-““~,,,(z). In the case of DMT 
g = 1, and in DWMT with Method 1 gM = L, while in 
DWMT with method 2 gM = LI. Let B’(z) = z-~B(z) be 
the minimum mean square estimate of C(r)W(z) [5] and 

p be the nominal delay introduced by the B(r). Then, 

d = KM - D - p (or KM - D - p - M/2 for Method 

2) where h’ is chosen to make d non-negative. 

For a simple delay channel with a delay of p + D, the 

input symbol for mth subchannel in lth block and the corre- 

sponding mth subchannel output at the receiver are related 

as a,(l) = &,,(I + gi) where gi = g + K. 
For an arbitrary channel, the carriers at the input of 

the receiver will not be orthogonal, and there will be inter 

symbol interference (ISI) both across the subchannels and 
also across the blocks. To mitigate the effect of ISI, we use 
a post-detection equalizer [2] which combines the receiver 

output samples to give 

A,, (m’, k)@,l (il + k + 91) (9) 
kz--v m’ER(ml) 

Here j,,,,(il) is an estimate of s,,,,(ii), n(mi) denotes the 

set of indices of the subchannels that are involved in the esti- 

mation of the symbols in the mih subchannel and v denotes 

the number of blocks prior to and after the desired block. 
The design of the equalizer is equivalent to choosing the 

parameters X,, (m’, k). As we see later, the performance of 
the equalizer depends on the number of subchannels used 

in the equalization. 
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Figure 3: Discrete multicarrier modulation system 

From Fig. 3, the transmitter and pre-detection equalizer 
0utput.s are 

M-l 

z(n) = C C sm(l)fm(n - IM) (10) 
m=O I 

r(n) = w(n)*c(n)*z(n)+w(n)*q(n) (11) 

where {q(n)} is the channel noise sequence. The output of 

mih subchannel of the receiver is then given by 

O,,(n) = C r(i)& (Mn - i) 

i 
M-l 

= C C sm(l)hm,ml (M(n - 1)) 

m=O 1 

+ C q(i)f~,,(dfn - i) (12) 

where 

h m,ml (n) = f”(n) * c(n) * w(n) * L,(n) (13) 

2 f”(n) * b’(n) * fk, (n) (14) 

and 

f”(n) = w(n) * f;(n) (15) 

Following the steps as in [2], we determine the coeffi- 
cients of the post-detection equalizer, A,, (m’, k). The es- 
timate of 3 ,,,,(il) is given by 

i”,(h) = 

kz Am, Cm’, k)sml (il)hml,ml((k + gl)W 
k---v m’ 

+ c Cxm,(m’,k)Cq(i)fm~((k+gl +il)M-i) 
ks--u m’ i 

= ~m,(il)sm,(il) + Cam(+m(l) -t zm,(il) (16) 

is obtained byhstacking A,, (m’, k), k = --v,. . . , v, m’ E 
R(ml). The t element of vector al,, is 

al,m(t) = h,,,(,) ((il + k(t) + gl - Wf) 07) 

where m(t) and k(t) denote the indices m’ and k, respec- 
tively, of the tth element of v,,,~. The tfh element of vector 

qt,,m, is 

q ll,ml (t) = c fm(t)((il + k(t) + gl):kf - i)q(i) (18) 

Now E[l~m,(il)l~] = vml + CVrnl, where C = EkC,,,,q~,,,l. 
The elements of C are given by 

c(t19t2) = CCfA(,,)((il+gi +k(t;))M-i) 

.; m(t:)((il + gl + k(tz))M - 1)$(i - I) 

where G(n) is the auto-correlation function of q(n). 
We now maximize the signal to interference plus noise 

ratio, given by 

rm,(ir) = 
lamI (il)l' 

E[h(i1121 + XI,,,, lamW12 
T 

= V”, + aT,,m,ai,,m,Vml 

vf, Bvml 
(19) 

where B = C + ci,, a:,,aT,,,. B is conjugate symmetric 

and we assume it to be nonsingular. Let u = B*-l’Pail,ml. 

Then 

From Schwartz inequality, yml (il) is maximum and equal to 
U=LI when u o( (B’/‘v)‘. With normalization of amI (ir) = 

1, we obtain the vector v,,,~ as 

V”l = 
B-‘ai: ,ml 

a!l,mlB-‘*ai,,m, 
(21) 

This is determined for ml = 0, . . . , M/2 - 1. 

“71 

The primed sum denotes sum over a~ pairs (m, I) # (ml, ir), 

o,(l) = vz,ar,, and zml(il) = v~,q,l,ml. Vector vmI 



TABLE 1. Number of bits in error per 6000 bits in each subchannel for the DWMT system with complex bases of Method 
1 for 16-QAXI constellation 

subchannel number average bit error 

P(ml)l 01234 5 6 7 probability 

6 no noise 172 0 0 0 64 24i 854 687 0.04217 

30 dB SXR 188 0 0 0 93 271 895 709 0.04492 

10 no noise 165 0 0 0 58 246 847 684 0.04167 

30 dB SNR 193 0 0 0 85 267 892 704 0.04460 

TABLE 2. Number of bits in error per 3000 bits in subchannels 0 & 8 and per 6000 bits in other subchannels for the Dl,lT 
system for 18QAM constellation 

subchannel number average bit error 

PCml)l 012345678 probability 

6 no noise 703 7 17 90 146 317 493 889 353 0.06281 

30 dB SXR 686 10 19 97 164 328 499 876 36i 0.06346 

10 no noise 560 0 0 11 lli 242 451 819 318 0.05246 

30 dB SNR 544 0 0 17 141 272 472 822 311 0.05373 

4. SIMULATION RESULTS 

We conducted simulations to compare the performance of 
the DWMT system with that of DMT. In both cases, we 

used M = 16 and 16-QAM signal constellation with uniform 

bit loading. We used the wavelet packet bases obtained 
from Method 1 with L = 64. The prototype filt.er was 

designed to minimize the stopband attenuation at the cost 

of a slight increase in the transition band. This results 
in significant overlap between the frequency responses of 
the adjacent bases only. The pre-detection equalizer W(z), 

fixing its length at 5, and the channel target filter B’(z) were 
designed following the procedure given in [5]. The channel 

C(z) used in the simulation is taken from [6]. The impulse 

response of this filter is of length 14 and is given by [-.12 
-.13 -.16 -.18 -.22 -.26 -.12 .68 .46 .26 .07 -.04 -.l -.12]. We 

chose v = 1 in the D&IT case and v = 3 for DWMT. To see 
the effect number of subchannels used in the equalization, 
we considered two cases with 6 and 10 (i.e., size of fi(rnl), 

denoted by In(m is chosen as 6 and lo), taking the bases 

and their conjugates in pairs. For example, for ml = 2 and 
In( = 6, we used the pairs of bases corresponding to 

(1,14), (2,13) and (3,12) subchannels. Tables 1 and 2 give 
the number of detected bits in error for the two systems. We 
may point out here that the training bits, used for finding 

W(z) and B’(z), are not counted in the results. 

We note the following from the results. The DWMT sys- 
tem gives significantly better performance than the DMT. 

Use of more subchannels in the equalization gives significant 
improvement in the case of DMT, while this improvement is 
marginal in the case of DWMT. This is because the overlap 

among the subchannels is high in the case of DMT. In fait, 
we have observed from the simulations that the performance 

of the DMT system using all the subchannels in the equal- 

ization is almost same as that of DWMT with In( = 6. 

Though for comparison purpose we have used same number 

of bits for all the subchannels, in practice, different num- 
ber of bits will have to be used for different subchannels 
depending upon the channel response. 

Other simulation results (not shown here) show that 

DWMT system using YIethod 2 bases yields slightly poorer 

performance compared to that with Method 

both QAM and PM signals, because of slightly 

band attenuation in the case of Method 2. 
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