A Genetic Approach to the Design of General-Tree-Structured
Vector Quantizers for Speech Coding

Lin Yu Tseng* and Shiueng Bien Yang
Department of Applied Mathematics
National Chung Hsing University
Taichung, Taiwan 402, R.O.C.
e-mail: lytseng(@amath.nchu.edu.tw

Abstract

The full-search vector quantization suffers from
spending much time searching the whole codebook
sequentially. Rccently, several tree-structured vector
quantizers had been proposed. But almost all trees uscd
arc binary trecs and hence the training samples contained
in each node are forced to be divided into two clusters
artificially. We present a general-tree-structured vector
quantizer that is based on a genetic clustering algorithm.
This genetic clustering algorithm can divide the training
samples contained in each node into more natural clusters.
A distortion threshold is used to guarantee the quality of
coding. Also, the Huffman coding is used to achicve the
optimal bit rate after the general-tree-structured coder was
constructed. An experiment on speech coding was
conducted. A comparison of the performance of this
vector quantizer and the other two tree-structured vector
quantizers is also given.

1. Introduction

There are two important points in the design of the
codebook. The first is trying to find a good set of
codewords such that the quantization errors may be
minimized. The generalized Lloyd algorithm (GLA) {1]
had been widely used in the design of the codebook. It
suffers the drawback that the user must provide the
number of clusters in advance while the user in general
has no idea about how many clusters there should be in
the data set. In this paper, a genetic clustering algorithm
[2] is used in the codebook design. This algorithm will
search for a proper number of cluster centers and do the
clustering simultaneously. The second important point is
trying to make the codebook search as fast as possible.
The full search VQ searches the whole codebook
sequentially. It takes O(n) time when the codebook
contains n codewords. Recently, tree-structured vector
quantizers (TSVQ) [31,[4],[5).[6],{7],[8] were proposed.
In TSVQ, the codebook search takes about O(logn) time
when the tree-structured codebook is roughly a balanced
tree.

* Author to whom correspondence should be sent.

Chou et al. [5] proposed a method to design an
unbalanced tree coder. At first, a balanced fixed rate
TSVQ is grown to a predetermined height. Then it is
optimally pruned back by using the generalized Breiman,
Friecdman, Olshen, and Stone (BFOS) algorithm [9].
Riskin et al. {6] and Balakrishnan et al. [7] independently
proposed similar greedy methods for node splitting and
tree growing. The tree is grown by splitting one node at a
time. The design time is less for this method compared to
the pruning method. All tree-structured coders mentioned
above are binary trees. Usually there are cases that it is
not proper to divide the set of training samples into
exactly two clusters. The genetic clustering algorithm
searches for a proper number of clusters all by itscif. By
applying this genetic clustering algorithm, we proposed a
general-tree-structured vector quantizer. A distortion
threshold is used to guarantee the quality of coding. The
training samples contained in a node are divided into two
or more clusters by applying the genetic clustering
algorithm if the average distortion of this node is greater
than the distortion threshold. Therefore, the tree will grow
as a general tree with the average distortion rate of each
leaf less than the distortion threshold. All leaves are then
used to build a Huffman code tree [10] and hence the
coding is optimal given the general tree coder.

The remaining parts of the paper are organized as
follows. The genetic clustering algorithm is briefly
described in section II. The general-tree-structured vector
quantizer is described in section III. The experiment is
given in section IV and the conclusions are given in
section V.

I. A Brief Description of the Genetic
Clustering Algorithm

The genetic algorithms are good at searching [11],
[12]. Therefore, it is proper to apply the genetic approach
in the searching of clusters in a data set that we have no a
priori knowledge. The genetic clustering algorithm
consists of an initialization step and the iterative
generations. In each generation, there are three phases,
namely, the reproduction phase, the crossover phase and
the mutation phase. The initialization step and the three



phases of cach generation are deseribed in the following.
Initialization step:

A population of N strings is generated. All the
strings are of length n. Fach string represents a subset of
{01703,...., 04 }. If O;is in this subset, the ith position
of the string will be 1; Otherwise, the ith bit will be 0.
Each string represents the seeds for a clustering because
we will use cach object in the subsct represented by this
string as a sced to generate a cluster.

Reproduction phase:

The fitness of a string R is the sum of two scores,
SCORE1 and SCORE2. Let { S1,81,....,Sn } be the set
of clusters generated by string R. Let Cy, Cy, ..., Gy be
the centers of Sy,Sa,....,Sqa respectively. Let S be
defined as follows.

S = {O_ iO: €8, ad d0.C) =d0.C) forall k wh it 1 sk smandk = .} ’
where () C ) is the Euclidean distance.
( Note that S'; is a subset of Si and contains those

objects of S; that arc indecd closer to the center of S; than
to other centers. Also note that S'; may be a proper subset
of S;. In other words, there may be some objects of S; that
are closer to other centers than to the center of S.)

Now, SCORE1 and SCORE?2 are defined as follows.

If 2‘8'|<n then SCOREl:'—ZiSJ and

1=

SCORE2=0.
It 2|5l = then SCOREI=n and SCORE2 is
o

defined in the following.
Suppose O;E€S;, we define Dinra(0,) = d(0..C) and
Dinter(0,) = lnlin d(0,.C)-

k=]

SCORE2 = Y (Dinter(O;) * w — Dintra(0,)),
1=1
where w is a weight. ( If the value of w is small, we

emphasize the importance of Dintra(O;) . This tends to

n

produce more clusters and each cluster tends to be
compact. If the value of w is chosen to be large, we

emphasize the importance of Dinter(O;) . This tends to

produce less clusters and each cluster tends to be loose.)
After the calculation of fitness for cach string in the
population, the reproduction operator is implemented by
using a roulette wheel with slots sized according to
fitness.
Crossover phase:

In the crossover phase, for each chosen pair of
strings, two random numbers in {1,2,...,n} are generated
to decide which pieces of the strings are to be

interchanged. For cach chosen pair of strings, the
crossover operator is done with probability p..
Mutation phase:

In the mutation phase, bits of the sirings in the
population will be chosen with probability py,. Each
chosen bit will be changed from 0 to 1 or from 1 to 0.

III. The General-Tree-Structured Vector
Quantizers

In this scction, the design method of the gencral-
tree coder is described. The design of the coder is based
on the genetic clustering algorithm introduced in section
I1. The corresponding decoder is a Huffman decoding trec.
An assumption has becn made that the distribution of the
training samples uscd to design the codebook resembles
the distribution of the data to be coded.

Before describing how the tree coder is constructed,
we first introduce the data structures used. There are two
trees. A general trec T that acts as the coder and a binary
tree H that acts as the decoder. The data structure for a
node of T is depicted in Figure 1(a) and the data structure
for a node of H is depicted in Figure 1(b). Note that the
“codeword” field of a leaf node of T contains the
codeword while the “codeword” ficld of an internal node
of T contains the center of the cluster.

The following algorithm describes the design
method of the general-trec coder.

Algorithm Tree_Coder_Construction

Input: A sct of training samples and a distortion
threshold €.

A general-trec coder T with the avcrage
distortion of cach lecaf node less than or cqual
to € and the Huffman decoding trce H.

The queues Q and (' are sct to be empty.

Qutput:

Step 1.
Build the root node. Set up the pointer
pointing the set of whole training samples, fill
in the no. of training samples, and compute the
average distortion.

If The average distortion is greater

than .

Add this node at the rear of the

queue Q.

Else Add this node at the rcar of the
queue ()'.

Step2. If The queue Q is empty.

Then The coder tree T has been
constructed, go to Step 4.

Pick one node from the front of the queue Q.

Let this node be N. Apply the genetic

clustering algorithm to the set of training

samples contained in this node. Let there be p

clusters S;. S,, ..., Sp.

Then



Step3.  Fori=ltop

Build a child node N; of nodc N. Set up

the pointer pointing to S;. fill in the size

of S;, compute the center of S;, compute

the average distortion.

If The average distortion of N;
is greater than €.

Then Add N, at the rear of the
queuc Q.

Else Add this node at the rear of
the queue (Q'.

End

construct a Huffman decoding trce H
Traverse each leaf node of H to find the code
for this node and put this code into the “code™
field of the corresponding node in the coder
tree T. Stop.
An example is given to illustrate the algorithm. In
Figure 2(a), the coder tree T is depicted. Figure Z(b)
shows the Huffman decoding trce. Each leaf node of the
Huffman decoding tree is traversed and the coade of each
leaf node of the coder tree is thus derived.

Step 5.

cacn

1V. The Experiment

In this experiment, 5000 spectral feature vectors of
speech were used as the training samples to construct the
tree coder and the corresponding Huffman tree decoder.
These 5000 spectral feature vectors were taken from 300
single syllable speeches. The sampling rate of the specech
is 11025 Hz. Each frame contains 400 sample points and
is transformed into a spectral feature vector that contains
30 components. After obtaining the 5000 training samples,
these 300 single syllable speeches were spoken again by
the same person and another 5000 spectral feature vectors

ine samples. Two other methods, the
SUNE 5ampics. 1 wWo Olacl meinoas, e

mcthod [6] and the Chou’s method [5], were
implemented to make a comparison with our method.
These two methods are denoted as TSVQ[Greedy) and
TSVQ[Prune] in Table 1 and Figure 3. The SNR is
2

2, %o It

computed by the formula SNR =
10 log—

'/'»—-

is noted that for different distortion Icvels both the bit
rate and the SNR of our method outperforms the other

o A | SR
LU Uy ldUlC 1 dlld riguic J

£
o]
-
=
o
-
o
=
@)
Cu
w
-
-
=
e
w
—
wn
-
o
<
@
(<)
—

V. Conclusions

The trcc—structured ector quamwcr% (TSVQ) have

| S ;-J..,-» oo P S o L iil canrnlk P
1€ dgvaiila s UL criicicnd \ DL HLlll

—
et

> CO ULUUUK ll

U"l

vector

o alwavs divide

ompdrxson wnh the

antizers. But i
a sct of training samples into two clusters in order to keep
the tree binary. This in general will results in the increase
of cither the bit ratc or the average distortion or both. A
general-tree-structured VQ is proposcd in this paper. A
genetic clustering algorithm is used to grow the coder tree.
By using this clustering algorithm, a sct of training
samples will be divided into several natural clusters in
accordance to the characteristics of this set. A distortion

PRI [ gy I
COGCDOOK.

ng
traditional  full-search
nTSVQ, it is t

ut not proper ways ¢ivige

.-L ~£ ¢
l“lL.\l Ulu l) USLU 10 El.ldlrl“ll.b l 1<C qu:.uuy Of HD

After the gencral-tree coder was constructed, the Huffman
r‘mhno is used to achieve the m)hm')l bit rate.

References
[1] Y. Linde, A. Buzo and R. M. Gray, “An
algorithm for vector quantizer design,” JEFE
T'rans. Commun., vol. 28, no. 1, pp.84-95, 1980.
[2] L.Y.TscngandS. B. Yang, “Genetic algorithms
for  clustering, feature  selection  and
classification,” Proc. of IEEE International

Conference on Neural Networks, pp. 1612-1616,

1997.
21 A Ruva A W Gray VW M CGray and T
L_)J 4Ly UULU, P TNy W ) Ulﬂ‘y, Jl-, EA N Yi. ia a lu J .
Markel, “Speech coding based upon vector

quantization,”
Signal Process., vol.
1985.

[4] 1. Makhoul, S. Roucos and H. Gish, “Vector
quantization in speech coding,” Proc. IEEF, vol.
73, no. 11, pp. 1551-1588, 1985.

[5] P. A. Chou, T. Lookabaugh, and R. M. Gray,
“Optimal pruning with applications to tree-
structured source coding and modeling,” IEEE

Trans. Information Theoyv. vol. 35 no. 2. nn
irans. i [ ? . 33, NO. £, pp-

IEEE  Trans. Acout., Speech,
28, no.5, pp. 562-574,

6] E. A. Rlskm and R. M. Gray, “A greedy tree
growing algorithm for the design of variable rate
vector quantizers,” JEEE Trans. Signal Process.,
vol. 39, no. 11, pp. 2500-2507, 1991.

{7] M. Balakrishnan, W. A. Pcarlman and L. Lu,
“Variable-rate trce-structured vector quantizers,”
[EEE Trans. Information Theory, vol. 41, no. 4,

Q17_Q1N 100K
71 1-T0U, 1770,

. Chiueh, T. T. Tang, and L. G. Chen,
“Vect_or quantization using tree-structured self-
organizing feature maps,” IEEE Journal Selected
Areas Commun., vol. 12, no. 9, 1994.

[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C.

o
,—] el



J. Stone, Classification and Regression Trees.

The

Wadsworth  Statistics/Probability  Series.

Belmont, CA: Wadsworth, 1984,

A survey,” JEEE Computer, vol. 27, no. 6, pp.
17-26, 1994,

[12]

D. E. Goldberg, Genetic Algorithm in Search,

(10} T. H. Cormen, C. E. Leiserson and R. L. Rivest, Optimization, and Machine Learning, Addison-
Introduction to Algorithms, The MIT Press, Wesley  Publishing  Company, Reading,
Cambridge, Massachusetts, 1990. Massachusetts, 1989,

{11} M. Srinivas and M. Patnaik, “Genetic algorithm-

Table 1. The comparison of our method and the other two methods (testing samples).
Experi- [ #of Distortion Our method TSVQ [Greedy] TSVQ [Prune]
ments | code- threshold | Average bits SNR Average bits SNR Average bits SNR
words (t) per codeword er codeword er codeword
(1 22 250000 4.633 13.985 4.711 13.511 4.721 13.489
&) 85 200000 6.321 15.521 6.682 15.382 6.701 15.298
(3) 124 150000 6.727 16.128 6.879 15.977 6.891 15.879
H 157 100000 7.155 18.471 7.385 18.310 7.401 18.285
(3) 257 50000 7.911 20.178 8.184 20.011 8.211 20.023
codeword| code | pointer to the set of | no. of training | average | first child {right sibling
training samples samples distortion |  pointer pointer
(a) Fields of a node of the coder tree.
codeword | no. of training | pointer to the corresponding | left child | right child
samples node in the coder tree pointer pointer

(¢-,100,90)  (c.0,288)

(b) Fields of a node of the Huffman decoding tree.
Figure 1. The data structure of the coder tree and the Huffman decoding tree.

(a) The coder tree T

21

19

17

SNR

15

13

(b) The Huffman decoding tree H.
Figure 2. An example of the coder tree T and the Huffman decoding tree H.

e our method
TSVQ [Greedy)
TSVQ [Prune}

average bits per codeword

Figure 3. The ratio of the SNR and the bit rate of the data shown in Table 1.



