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Abstract 
The full-search vector quantization suffers from 

spending much time searching the whole codebook 
sequentially. Rcccntly, several tree-structured vector 

quantizers had been proposed. But almost all trees used 
arc binary trees and hence the training samples contained 
in each node are forced to be divided into two clusters 
artificially. We present a general-tree-structured vector 
quantizer that is based on a genetic clustering algorithm. 
This genetic clustering algorithm can divide the Iraining 
samples contained in each node into more natural clusters. 
A distortion threshold is used to guarantee the quality of 

coding. Also, the Huffman coding is used to achieve the 
optimal bit rate after the general-tree-structured coder was 
constructed. An experiment on speech coding was 
conducted. A comparison of the performance of this 
vector quantizer and the other two tree-structured vector 
quantizers is also given. 

I. Introduction 

There are two important points in the design of the 
codebook. The first is trying to find a good set of 
codewords such that the quantization errors may be 
minimized. The generalized Lloyd algorithm (GLA) [l] 
had been widely used in the design of the codebook. It 
suffers the drawback that the user must provide the 
number of clusters in advance while the user in general 
has no idea about how many clusters there should be in 
the data set. In this paper, a genetic clustering algorithm 
[Z] is used in the codebook design. This algorithm will 
search for a proper number of cluster centers and do the 
clustering simultaneously. The second important point is 
trying to make the codebook search as fast as possible. 
The full search VQ searches the whole codebook 
sequentially. It takes O(n) time when the codebook 
contains n codewords. Recently, tree-structured vector 
quantizers (TSVQ) [3],[4],[5],[6],[7],[8] were proposed. 
In TSVQ, the codebook search takes about O(logn) time 
when the tree-structured codebook is roughly a balanced 
tree. 
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Chou et al. [5] proposed a method to 
unbalanced tree coder. At first, a balanced 
TSVQ is grown to a predctermincd height. 

design an 
fixed rate 

Then it is 
optimally pruned back by using the generalized Brciman, 
Friedman, Olshen, and Stone (BOOS) algor-ithm [9]. 
Riskin et al. [6] and Balakrishnan et al. [7] independently 
proposed similar greedy methods for node splitting and 
tree growing. The tree is grown by splitting one node at a 
time. The design time is less for this method compared to 
the pruning method. All tree-structured coders mentioned 
above are binary trees. Usually there are cases that it is 
not proper to divide the set of training samples into 
exactly hvo clusters. The genetic clustering algorithm 
searches for a proper number of clusters all by itself. By 
applying this genetic clustering algorithm, we proposed a 
general-tree-structured vector quantizer. A distortion 
threshold is used to guarantee the quality of coding. The 
training samples contained in a node are divided into two 
or more clusters by applying the genetic clustering 
algorithm if the average distortion of this node is greater 
than the distortion threshold. Therefore, the tree will grow 
as a general tree with the average distortion rate of each 
leaf less than the distortion threshold. All !eaves are then 
used to build a Huffman code tree [lo] and hence the 
coding is optimal given the general tree coder. 

The remaining parts of the paper are organized as 
follows. The genetic clustering algorithm is briefly 
described in section II. The general-tree-structured vector 
quantizer is described in section III. The experiment is 
given in section IV and the conclusions are given in 
section V. 

II. A Brief Description of the Genetic 
Clustering Algorithm 

The genetic algorithms are good at searching [ll], 
[12]. Therefore, it is proper to apply the genetic approach 
in the searching of clusters in a data set that we have no a 
priori knowledge. The genetic clustering algorithm 
consists of an initialization step and the iterative 
generations. In each generation, there are three phases, 
namely, the reproduction phase, the crossover phase and 
the mutation phase. The initialization step and the three 



phases of each gcncration arc dcscribcd in the following. 
Initialization step: 

A population of N strings is gcneratcd. All the 

strings are of length n. Each string rcprcscnts a subset of 
( O,, O?, . . . . , 0, }. If Oi is in this subset, the ith position 

of the string will bc 1; Otherwise, the ith bit will lx 0. 

Each string represents the seeds for a clustering because 
we kvill use each object in the subset rcpresentcd by this 
string as a seed to gcncratc 3 cluster. 

Reproduction phase: 
The fitness of a string R is the sum of two scores, 

SCORE1 and SCORE2. Let { S, ,Sl, . . . . . S, } be the set 

of clusters generated by string R. Let C.‘,, C?, . . . . . C,,, be 

the ccntcrs of SI ,S?, . . . . . S,, respcctivcly. I..Ct S’j bC 

defined as follows. 
+ :o;o, q ;r~!lu(~;C) 5lkO .CJt-XLl k willhi I Sk ST.?iik *; ’ L I 
where ci(~(),,c; ,) is the Euclidean distance. 

( Kotc that S’, is a subset of sJ and contains those 

objects of Sj that arc indeed closer to the center of S, than 

to other centers. Also note that S’j may IX a proper subset 
of S,. In other words, there may be some objects of Sj that 
are closer to other centers than to the center of Sj. ) 
Now, WOKE1 and SCORE2 are defined as follows. 

defined in the foliowing. 

SUppOSe OiESj 9 we dcfinc Dintra(O:) = d(O:.C. j and 

SCORE = ” (Dintcr(Oi) * w - Dintra(Oi)) , 
72 
I=1 

where w is a weight. ( If the value of w is small, we 
emphasize the importance of D intra(O I ) This tends to 

produce more clusters and each cluster tends to be 
compact. If the value of w is chosen to be large, we 

emphasize the importance of Dinter(0,) . This tends to 

produce less clusters and each cluster tends to bc loose.) 
After the calculation of fitness for each string in the 
population, the reproduction operator is implemented by 
using a roulette wheel with slots sized according to 
fitness. 
Crossover phase: 

In the crossover phase, for each chosen pair of 
strings, two random numbers in { 1,2,...,n} are generated 
to decide which pieces of the strings are to be 

intcrchangcd. For each chosen pair of strings, the 
crossover operator is done with probability pC. 

hlutation phase: 
In the mutation phase, bits of the si: ings iu the 

population will be chosen with probability pm. Each 
chosen bit will be changed from 0 to 1 or from 1 to 0. 

III. The General-Tree-Structured Vector 
Quantizers 

In this section, the design method of the gencral- 
tree coder is described. The design of the coder is based 
on the genetic clustering algorithm introduced in section 
II. The corresponding decoder is a IIuffman decoding TV-CC. 

An assumption has been made that the distribution of the 
training samples used to design the codcbook resembles 
the distribution of the data to be coded. 

Before describing how the tree coder is constructed, 
we first introduce the data structures used. There arc t\vo 
trees. A general tree T that acts as the coder and a binary 
tree H that acts as the decoder. The data structure for a 
node of T is dcpictcd in Figure l(a) and the data structure 
for a node of I-l is depicted in Figure l(b). Note that the 
“codeword” field of a leaf node of T contains the 
codeword while the “codeword” field of an internal node 
of T contains the ccntcr of the cluster. 

The following algorithm dcscribcs the design 
method of the general-tree coder. 
Algorithm l’rce-Coder-Construction 

Input: A set of training samples and a distortion 

threshold E. 
Output: A genera!-tree coder T with the avcragc 

distortion of each leaf node less than or equal 

to E and the Huffman decoding tree 14. 

step I. The queues Q and Q’ are set to bc empty. 

Build the root node. Set up the pointer 
pointing the set of whole training samples, fill 
in the no. of training samples, and compute the 

average distortion. 

If The average distortion is greater 

than e. 
Then Add this node at the rear of the 

queue Q. 

Else Add this node at the rear of the 
queue Q’ . 

Step 2. If The queue Q is empty. 
Then The coder tree T has been 

constructed, go to Step 4. 
Pick one node from the front of the queue Q. 
Let this node be N. Apply the genetic 
clustering algorithm to the set of training 
samples contained in this node. Let there be p 
clusters S1. S’. . . . . S,. 



Step 3. For i = 1 to p 

Begin 
Build a child node Ni of node N. Set Up 
the pointer pointing to Si. fill in the size 

of S,, CORIPLII~ the center of Si, compute 
the average distortion. 

If The average distortion of Ni 

is greater than E. 

‘llwn Add N, at the rear of the 
qucuc Q. 

Else Add this node at the rear of 
the queue Q’ . 

End 
Go to Step 2. 

Step 3. Take all the nodes in the queue u’. For each 

node, build a new node with the data structure 
depicted in Figure l(b). USC these nodes to 
construct a Huffman decoding tree H. 

Step 5. Travcrsc each leaf node of H to find the code 
for this node and put this code into the “code” 
field of the corresponding node in the coder 
tree T. Stop. 

An example is given to illustrate the algorithm. In 
Figure Z(a), the coder tree T is depicted. Figure 2(b) 
shows the IIuffrnan decoding tree. Each leaf node of the 
Iiuffman decoding tree is traversed and the cadc of each 
leaf node of the coder tree is thus dcrivcd. 

IV. The Experiment 

In this cxpcriment, 5009 spectral feature vectors of 
speech were used as the training samples to construct the 
tree coder and the corresponding Huffman tree decoder. 
‘I‘hcse 5000 spectral feature vectors were taken from 300 
single syllable speeches. The sampling rate of the speech 
is 11025 IIz. Each frame contains 400 sample points and 
is transformed into a spectral feature \:cctor that contains 
30 components. After obtaining the 5000 training samples, 
thcsc 300 single syllable speeches were spoken again by 
the same person and another 5000 spectral feature vectors 
were taken as the testing samples. Two other methods, the 
Riskin’s method [6] and the Chou’s method [5], were 
implemented to make a comparison with our method. 
These two methods arc dcnotcd as TSVQ[GreedyJ and 
TSVQ[Prune] in Table 1 and Figure 3. The SNR is 

computed by the formula SNR = cxn2 . It 
lOlog 1 5 

$2 (x, -x:,’ 
I 2 

is noted that for different distortion levels, both the bit 
rate and the SNR of our method outperforms the other 
two methods. This is revealed by Table 1 and Figure 3. 

V. Conclusions 

The tree-structured vector quantizcrs (TSVQ) have. 
the ndvantagc of cfficicncy in searching co&book in 

comparison with the traditional full-search vector 
quantizers. But in TSVQ, it is not proper to al\vays divide 
a set of training samples into two clusters in order to keep 
the tree binary. This in general will results in the increase 
of tither the bit rate or the average distortion or both. A 
gcncral-tree-structured VQ is proposed in this paper. A 
gcnctic clustering algorithm is used to grow the coder tree. 
By using this clustering algorithm, a set of training 
samples will be divided into several natural clusters in 
accordance to the characteristics of this set. A distortion 
threshold is used to guarante.e the quality of the codebook. 
After the general-tree coder was constructed, the Huffman 
coding is used to achieve the optimal bit rate. 
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(a) Fields of a node of the coder tree. 
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(b) Fields of a node of the Huffman decoding tree. 
Figure 1. The data structure of the coder tree and the Huffman decoding tree. 
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(a) The coder tree T 

Figure 2. An example of the coder tree T and the Huffman decoding tree I I. 
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Figure 3. The ratio of the SNR and the bit rate of the data shown in Table 1. 


