
A Genetic Approach to the Design of General-Tree-Structured
Vector Quantizers for Speech Coding

Lin Yu Tseng* and Shiucng Bien Yang
Department of Applied Mathematics

National Chung Hsing University
Taichung, Taiwan 402, R.O.C.

e-mail: lytscng(~~amath.nchu.edu.tw

Abstract
The full-search vector quantization suffers from

spending much time searching the whole codebook
sequentially. Rcccntly, several tree-structured vector

quantizers had been proposed. But almost all trees used
arc binary trees and hence the training samples contained
in each node are forced to be divided into two clusters
artificially. We present a general-tree-structured vector
quantizer that is based on a genetic clustering algorithm.
This genetic clustering algorithm can divide the Iraining
samples contained in each node into more natural clusters.
A distortion threshold is used to guarantee the quality of

coding. Also, the Huffman coding is used to achieve the
optimal bit rate after the general-tree-structured coder was
constructed. An experiment on speech coding was
conducted. A comparison of the performance of this
vector quantizer and the other two tree-structured vector
quantizers is also given.

I. Introduction

There are two important points in the design of the
codebook. The first is trying to find a good set of
codewords such that the quantization errors may be
minimized. The generalized Lloyd algorithm (GLA) [l]
had been widely used in the design of the codebook. It
suffers the drawback that the user must provide the
number of clusters in advance while the user in general
has no idea about how many clusters there should be in
the data set. In this paper, a genetic clustering algorithm
[Z] is used in the codebook design. This algorithm will
search for a proper number of cluster centers and do the
clustering simultaneously. The second important point is
trying to make the codebook search as fast as possible.
The full search VQ searches the whole codebook
sequentially. It takes O(n) time when the codebook
contains n codewords. Recently, tree-structured vector
quantizers (TSVQ) [3],[4],[5],[6],[7],[8] were proposed.
In TSVQ, the codebook search takes about O(logn) time
when the tree-structured codebook is roughly a balanced
tree.

* Author to whom correspondence should be sent.

Chou et al. [5] proposed a method to
unbalanced tree coder. At first, a balanced
TSVQ is grown to a predctermincd height.

design an
fixed rate

Then it is
optimally pruned back by using the generalized Brciman,
Friedman, Olshen, and Stone (BOOS) algor-ithm [9].
Riskin et al. [6] and Balakrishnan et al. [7] independently
proposed similar greedy methods for node splitting and
tree growing. The tree is grown by splitting one node at a
time. The design time is less for this method compared to
the pruning method. All tree-structured coders mentioned
above are binary trees. Usually there are cases that it is
not proper to divide the set of training samples into
exactly hvo clusters. The genetic clustering algorithm
searches for a proper number of clusters all by itself. By
applying this genetic clustering algorithm, we proposed a
general-tree-structured vector quantizer. A distortion
threshold is used to guarantee the quality of coding. The
training samples contained in a node are divided into two
or more clusters by applying the genetic clustering
algorithm if the average distortion of this node is greater
than the distortion threshold. Therefore, the tree will grow
as a general tree with the average distortion rate of each
leaf less than the distortion threshold. All !eaves are then
used to build a Huffman code tree [lo] and hence the
coding is optimal given the general tree coder.

The remaining parts of the paper are organized as
follows. The genetic clustering algorithm is briefly
described in section II. The general-tree-structured vector
quantizer is described in section III. The experiment is
given in section IV and the conclusions are given in
section V.

II. A Brief Description of the Genetic
Clustering Algorithm

The genetic algorithms are good at searching [ll],
[12]. Therefore, it is proper to apply the genetic approach
in the searching of clusters in a data set that we have no a
priori knowledge. The genetic clustering algorithm
consists of an initialization step and the iterative
generations. In each generation, there are three phases,
namely, the reproduction phase, the crossover phase and
the mutation phase. The initialization step and the three

phases of each gcncration arc dcscribcd in the following.
Initialization step:

A population of N strings is gcneratcd. All the

strings are of length n. Each string rcprcscnts a subset of
(O,, O?, , 0, }. If Oi is in this subset, the ith position

of the string will bc 1; Otherwise, the ith bit will lx 0.

Each string represents the seeds for a clustering because
we kvill use each object in the subset rcpresentcd by this
string as a seed to gcncratc 3 cluster.

Reproduction phase:
The fitness of a string R is the sum of two scores,

SCORE1 and SCORE2. Let { S, ,Sl, S, } be the set

of clusters generated by string R. Let C.‘,, C?, C,,, be

the ccntcrs of SI ,S?, S,, respcctivcly. I..Ct S’j bC

defined as follows.
+ :o;o, q ;r~!lu(~;C) 5lkO .CJt-XLl k willhi I Sk ST.?iik *; ’ L I
where ci(~(),,c; ,) is the Euclidean distance.

(Kotc that S’, is a subset of sJ and contains those

objects of Sj that arc indeed closer to the center of S, than

to other centers. Also note that S’j may IX a proper subset
of S,. In other words, there may be some objects of Sj that
are closer to other centers than to the center of Sj.)
Now, WOKE1 and SCORE2 are defined as follows.

defined in the foliowing.

SUppOSe OiESj 9 we dcfinc Dintra(O:) = d(O:.C. j and

SCORE = ” (Dintcr(Oi) * w - Dintra(Oi)) ,
72
I=1

where w is a weight. (If the value of w is small, we
emphasize the importance of D intra(O I) This tends to

produce more clusters and each cluster tends to be
compact. If the value of w is chosen to be large, we

emphasize the importance of Dinter(0,) . This tends to

produce less clusters and each cluster tends to bc loose.)
After the calculation of fitness for each string in the
population, the reproduction operator is implemented by
using a roulette wheel with slots sized according to
fitness.
Crossover phase:

In the crossover phase, for each chosen pair of
strings, two random numbers in { 1,2,...,n} are generated
to decide which pieces of the strings are to be

intcrchangcd. For each chosen pair of strings, the
crossover operator is done with probability pC.

hlutation phase:
In the mutation phase, bits of the si: ings iu the

population will be chosen with probability pm. Each
chosen bit will be changed from 0 to 1 or from 1 to 0.

III. The General-Tree-Structured Vector
Quantizers

In this section, the design method of the gencral-
tree coder is described. The design of the coder is based
on the genetic clustering algorithm introduced in section
II. The corresponding decoder is a IIuffman decoding TV-CC.

An assumption has been made that the distribution of the
training samples used to design the codcbook resembles
the distribution of the data to be coded.

Before describing how the tree coder is constructed,
we first introduce the data structures used. There arc t\vo
trees. A general tree T that acts as the coder and a binary
tree H that acts as the decoder. The data structure for a
node of T is dcpictcd in Figure l(a) and the data structure
for a node of I-l is depicted in Figure l(b). Note that the
“codeword” field of a leaf node of T contains the
codeword while the “codeword” field of an internal node
of T contains the ccntcr of the cluster.

The following algorithm dcscribcs the design
method of the general-tree coder.
Algorithm l’rce-Coder-Construction

Input: A set of training samples and a distortion

threshold E.
Output: A genera!-tree coder T with the avcragc

distortion of each leaf node less than or equal

to E and the Huffman decoding tree 14.

step I. The queues Q and Q’ are set to bc empty.

Build the root node. Set up the pointer
pointing the set of whole training samples, fill
in the no. of training samples, and compute the

average distortion.

If The average distortion is greater

than e.
Then Add this node at the rear of the

queue Q.

Else Add this node at the rear of the
queue Q’ .

Step 2. If The queue Q is empty.
Then The coder tree T has been

constructed, go to Step 4.
Pick one node from the front of the queue Q.
Let this node be N. Apply the genetic
clustering algorithm to the set of training
samples contained in this node. Let there be p
clusters S1. S’. S,.

Step 3. For i = 1 to p

Begin
Build a child node Ni of node N. Set Up
the pointer pointing to Si. fill in the size

of S,, CORIPLII~ the center of Si, compute
the average distortion.

If The average distortion of Ni

is greater than E.

‘llwn Add N, at the rear of the
qucuc Q.

Else Add this node at the rear of
the queue Q’ .

End
Go to Step 2.

Step 3. Take all the nodes in the queue u’. For each

node, build a new node with the data structure
depicted in Figure l(b). USC these nodes to
construct a Huffman decoding tree H.

Step 5. Travcrsc each leaf node of H to find the code
for this node and put this code into the “code”
field of the corresponding node in the coder
tree T. Stop.

An example is given to illustrate the algorithm. In
Figure Z(a), the coder tree T is depicted. Figure 2(b)
shows the IIuffrnan decoding tree. Each leaf node of the
Iiuffman decoding tree is traversed and the cadc of each
leaf node of the coder tree is thus dcrivcd.

IV. The Experiment

In this cxpcriment, 5009 spectral feature vectors of
speech were used as the training samples to construct the
tree coder and the corresponding Huffman tree decoder.
‘I‘hcse 5000 spectral feature vectors were taken from 300
single syllable speeches. The sampling rate of the speech
is 11025 IIz. Each frame contains 400 sample points and
is transformed into a spectral feature \:cctor that contains
30 components. After obtaining the 5000 training samples,
thcsc 300 single syllable speeches were spoken again by
the same person and another 5000 spectral feature vectors
were taken as the testing samples. Two other methods, the
Riskin’s method [6] and the Chou’s method [5], were
implemented to make a comparison with our method.
These two methods arc dcnotcd as TSVQ[GreedyJ and
TSVQ[Prune] in Table 1 and Figure 3. The SNR is

computed by the formula SNR = cxn2 . It
lOlog 1 5

$2 (x, -x:,’
I 2

is noted that for different distortion levels, both the bit
rate and the SNR of our method outperforms the other
two methods. This is revealed by Table 1 and Figure 3.

V. Conclusions

The tree-structured vector quantizcrs (TSVQ) have.
the ndvantagc of cfficicncy in searching co&book in

comparison with the traditional full-search vector
quantizers. But in TSVQ, it is not proper to al\vays divide
a set of training samples into two clusters in order to keep
the tree binary. This in general will results in the increase
of tither the bit rate or the average distortion or both. A
gcncral-tree-structured VQ is proposed in this paper. A
gcnctic clustering algorithm is used to grow the coder tree.
By using this clustering algorithm, a set of training
samples will be divided into several natural clusters in
accordance to the characteristics of this set. A distortion
threshold is used to guarante.e the quality of the codebook.
After the general-tree coder was constructed, the Huffman
coding is used to achieve the optimal bit rate.

PI

t41

PI

IhI

PI

PI

PI

References
Y. Linde, A. Huzo and R. M. Gray, “An
algorithm for vector quantizer design,” /ElX
Trans. Comtnun., vol. 28, no. 1, pp.&I-OS, 1980.
L. Y. Tscng and S. l3. Yang, “Genetic algorithms
for clustering, feature selection 2lIld

classification,” Proc. of IEEE Intcrtiafional
Cot~ferwce 011 Neural /Vetwork%, pp. 1612-16 16,
1997.

A. Buzo, A. JI. Gray, Jr., R. M. Gray and J.
Markel, “Speech coding based upon vector
quantization,” IEEE Trans. Acour., Speech,
Signal Process., vol. 28, no.5, pp. 562-574,
1085.

J. Makhoul, S. Roucos and II. Gish, “Vector
quantization in speech codinp,” Proc. IEEE, vol.
73, no. 11, pp. 1X1-1588,19X5.
P. A. Chou, T. L.ookabaugh, and R. M. Gray,
“Optimal pruning with applications to trcc-
structured source coding and modeling,” IFEE
Trans. Information Theoty, vol. 3S, no. 2, pp.
299-315, 1989.
E. A. Riskin and R. M. Gray,. “A greedy tree
growing algorithm for the design of variable rate
vector quantizers,” IEEE Trans. Signal Process.,
vol. 39, no. 11, pp. 2X30-2507, 1991.
M. Balakrishnan, W. A. Pcarlman and L. Lu,
“Variable-rate tree-structured vector quantizcrs,”
IEEE Trans. Informafion Theoty, vol. 41, no. 4,
pp. 917-930, 1995.
T. D. Chiueh, T. T. Tang, and L. G. Chen,
“Vector quantization using tree-structured self-
organizing feature maps,” IEEE Journal Selected
Areas Commun., vol. 12, no. 9, 1994.
L. Breiman, J. H. Friedman, R. A. Olshen, and C.

J. Stone, C’laxsificatior~ and Iiegre.s.sion Trees. A survey,” IEEE Computer, vol. 27, no. 6, pp.
The Wadworth Stutistic.siProhnI,ility Series. 17-26,1994.

Belmont, CA: Wadsworth, 1984. [121 D. E. Goldberg, Genetic Algorirhm in Search,
[IO] T. If. Cormcn, C. E. Leiserson and R. I,. Rivcst, Optimizutiotl, und Machine Leurnitlg, Addison-

It~trotluction to Algorithms, The MIT Press, Wesley Publishing Company, Reading,
Vambridgc, Massachusetts, 1990. Massachusetts, 1989.

[11) ?\I. Srinivas and M. Patnaik, ‘Genetic algorithm-

codeword code pointer to the set of no. of training average first child right sibling
training samples samples distortion pointer pointer

(a) Fields of a node of the coder tree.

codeword no. of training pointer to the corresponding left child right child
samples node in the coder tree pointer pointer

(b) Fields of a node of the Huffman decoding tree.
Figure 1. The data structure of the coder tree and the Huffman decoding tree.

(~~100~90) (~4,288) (c,,10100,20) (C~,1011,80) (c,,11.213)

(a) The coder tree T

Figure 2. An example of the coder tree T and the Huffman decoding tree I I.

21 r

4 5 6 7 8 9

average hii?; per iodilword

Figure 3. The ratio of the SNR and the bit rate of the data shown in Table 1.

