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ABSTRACT 

Explicit expressions for the second order statistics of 
cepstral components representing clean and noisy sig- 
nal waveforms are derived. The noise is assumed addi- 
tive to the signal, and the spectral components of each 
process are assumed statistically independent complex 
Gaussian random variables. The key result developed 
here is an explicit expression for the cross-covariance 
between the log-spectra of the clean and noisy signals. 
In the absence of noise, this expression is used to show 
that the covariance matrix of cepstral components rep- 
resenting a vector of N signal samples, approaches a 
fixed, signal independent, diagonal matrix at a rate 
of 1/N2. In addition, the cross-covariance expression 
is used to develop an explicit linear minimum mean 
square error estimator for the clean cepstral compo- 
nents given noisy cepstral components. Recognition 
results on the ten English digits using the fixed covari- 
ante and linear estimator are presented. 

1. INTRODUCTION 

Cepstral analysis has been widely used in signal pro- 
cessing. We study second order statistical properties of 
cepstral components and apply them to HMM-based 
speech recognition in clean and noisy environments. 
The noise is assumed additive to the signal, and the 
spectral components of each process are assumed sta- 
tistically independent Gaussian random variables. 

There are many different cepstral representations of 
a given signal vector. The simplest non-parametric rep- 
resentation of a vector y = (yc, . . , y~-i)~, with dis- 
crete Fourier transform (DFT) Y = (Ys, . . . , YK-~)~, 
to be studied here, is given by 

where K > 2N - 1 so that h(Ykl’ represents the DFT 
of linear rather than circular sample correlation of the 
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vector y. It is shown in Section 2 that cy(n) is sta- 
ble even though it is derived from the unstable peri- 
odogram estimate $r JYk I2 of the power spectral density 
of the signal. 

In speech recognition applications, N-dimensional 
signal vectors y are represented by L-dimensional cep- 
stral feature vectors (c,(n), n = 1,. . . ,L)T, where 
L < N. The zeroth component c,(O) is often excluded 
when representation of the log-spectrum average is not 
desired. The cepstral vectors from a given word in the 
vocabulary are assumed to have the probability den- 
sity function (pdf) of an HMM with Gaussian state- 
dependent pdf’s. Each state is assumed to have its own 
mean vector and diagonal covariance matrix. A theo- 
retical justification for attributing diagonal covariance 
matrices to cepstral vectors was given in [l]. 

In addition to providing significant reduction in di- 
mensionality, the cepstral representation of acoustic 
speech signals captures the spectral envelop of the sig- 
nal while suppressing the speaker dependent pitch in- 
formation, it reduces the dynamic range of the signal 
in a manner similar to that performed by the human 
auditory system, and it enables straightforward equal- 
ization of transmission channels. All of these useful 
properties are in fact a direct consequence of using the 
logarithm function [2]. Unfortunately, however, this 
nonlinear logarithmic function creates major difficulties 
when the recognizer is trained on clean speech signals 
but is used to recognize signals corrupted by additive 
noise. In this case the effect of the noise on the cep- 
stral representation of the clean signal is rather difficult 
to quantify. Furthermore, suppression of the noise in 
the cepstral domain requires careful analysis beyond 
the standard Wiener filtering theory. These subjects 
constitute the main focus of this work. 

The key result developed here is an expression for 
the cross-covariance between the log-spectra of the clean 
and noisy signals. This cross-covariance is given by an 
infinite weighted sum of powers of the Wiener filter 
for estimating the clean signal from the noisy signal. 



Given this expression we first show that the covariance 
of cepstral components rapidly approaches a fixed sig- 
nal independent constant diagonal matrix. Secondly, 
we derive an explicit linear minimum mean square er- 
ror (MMSE) estimator for cepstral components of the 
clean signal from corresponding cepstral components of 
t.he noisy signal. The fixed covariance allows reduction 
in the number of HMM parameters by at least a factor 
of two. The linear MMSE estimator can be used as a 
preprocessor when the input signal is noisy. 

2. MAIN THEORETICAL RESULTS 

The derivations of the results in this section can be 
found in [2]. Let y, ‘w and z denote N-dimensional vec- 
tors of the clean signal, the noise process and the noisy 
signal, respectively. The noise is additive so z = y + w. 
Let Yk, mk and zk, respectively, denote k-th normal- 
ized DFT components of the signal, noise, and noisy 
signal. The normalization is by N1i2 so that ]Yk;cl” 
represents power spectral density as opposed to en- 
ergy spectral density. The spectral components of each 
process are assumed statistically independent complex 
Gaussian random variables with zero mean and vari- 
ances given by E{]Yk;;EI”} = Xy,, E{]mk12} = XW, and 
E{]z,]2} = Xz* for k = 0,. . . ,K - 1. Note that 
the processes themselves need not be strictly Gaussian 
es? under certain assumptions, their spectral compo- 
nents become statistically independent Gaussian ran- 
dom variables as a result of a central limit theorem [3, 
Theorem 4.4.11. 

2.1. Second-order statistics 

The mean and variance of the kth component of the 
log-spectrum of the clean signal are, respectively, given 

by, 

(2) 
where y = 0.57721566490 is the Euler constant, and 
e = 2.71828 is the natural logarithm basis, and 

process is given by 

= E:&ij+$G,” k=O, 5 

{ 

(4) 

Cal 3G,“? k=l,...+l 

where Gk denotes the Wiener filter of the spectral com- 
ponent Yk given the noisy component Zk, 

Gk = XYA. 
XY, + xw, 

Several comments are in order: 

(5) 

1. 

2. 

3. 

4. 

The variance of the kth log-spectrum component 
of any of the three processes is the same, and is 
given by the constant ~~16 for 0 < k < K/2. A 
similar result was reported in [4] where stabiliza- 
tion of the log-periodogram using a smoothing 
spline was considered. An asymptotic version of 
this property (as N + co) was first shown by 
Brillinger [3, Corollary 5.6.31 for the smoothed 
periodogram power spectral density estimator of 
a strictly stationary process with finite moments 
and small dependence span. No explicit assump- 
tion that the spectral components are either Gaus- 
sian or independent was made [3]. 

In the absence of noise, Xw, = 0, Gk = 1, and 
(4) reduces to (3). 

The covariance function given in (4) for 0 < k < 
K/2 is a member of the polylogarithm functions. 

These functions are defined as &,(a): CF=i $r: 
where z denotes here a complex variable. The CO- 

variance function given in (4) for 0 < k < K/2 
equals Liz(Gk) and is known as the dilogarithm 
function. 

Since 0 5 Gk 5 1, the sums in (4) do not converge 
slower than the sums in (3). We found that. an 
error of less than 1% occurs if the infinite sum for 
0 < k < K/2 in (3) is truncated to only 61 terms. 

The second order statistics of cepstral components 
can be derived from the second order statistics of the 
log-spectrum. The mean of cy(n) is obtained from in- 
verse DFT of (2) and is given by 

Val-(log ly,12) = 

where (a),fil.a.(a+l).(a+2)...(a+n-1). Further- 

more, Cr=i $ = $. Similar expressions for the mean 
and variance of the log-spectrum of the noise and the 
noisy process hold. The appropriate expressions are 
obtained by replacing Y in (2) and (3) by W and 2, 
respectively. The covariance between the kth compo- 
nents of the log-spectra of the clean signal and the noisy 

~{~,(n)} = i Ke log(Xy,) exp{j$kn} + & 
k=O 

(6) 

where 

ES 

Zlog($)-Ky ifn=O 

2 log( $) if n even 
0 if n odd . 

(7) 



Similar expressions hold for c,(n) and c,(n). 
The covariance of q,(n) for n, m = 0,. . . , K - 1 is 

given by 

cov(c,(n)7 CYb-4) 
= p cg)’ ukvar{log(l~ji(12)} cos($kn) cos(%km) 
= ~~(@(n+m) mod K + &n-m) mod K)T 

(8) 
where 

,$ 
1 ifk=O,$ 
2 if k # (0, $} (9) 

and for n = O;..,K - 1, 

e&i; Kc ukvar(log lFk12)exp{j$kn]. 
k=O 

(10) 

Note that en is the inverse DFT of the variance se- 
quence Var(log I~j12) weighted by &. If we define 

(11) 

am1 ?T2 
fc1= c 2 = s M 1.6449 (12) 

7l=l 

then using (3) and assuming K is an even number we 
obtain, 

2~i+$-(~-2&i) ifn=O 

en = $Ko - 261) ifn=2,4:eu.,K-2 
0 if n = 1,3;..,K - 1. 

(13) 
Hence, from (8), we have for n = 0:. . . , K/2! 

var(cdn)) = cov(c,(nL cdn)) 

andforn,m=O,l;..,K/2,n#m, 

= 
{ 

&(/CO - 2ni) if n -m = f2,&4;..,f!$ 
0 otherwise. 

(15) 
This covariance matrix is “almost” Toeplitz with zero 
alternate off diagonals. The deviation from Toeplitz 
matrix is at the (0,O) and (K/2, K/2) elements. An 
example of the 5 x 5 upper left block of the covariance 
matrix corresponding to a vector of length K = 8 is 
shown below. 

i 0.4516 0.0403 0.0403 0 0 0.2460 0.0403 0 0 0 0.0403 0.2460 0.0403 0 0 0.0403 0.2460 0 0 0 0.0403 0.0403 0.4516 0 0 

1 

I (16) 

Note that the covariance matrix of the cepstral com- 
ponents is independent of the signal. The non-zero 
off diagonal elements of this matrix approach zero as 
1/K2. Hence, for sufficiently large K (and hence, large 
N), the cepstral components are uncorrelated and their 
covariance matrix approaches a diagonal matrix given 

by 

+$ ifn=m=O:$ 

cov(c,(nLc,(m)) X 

{ 

+$ if 0 < n = m < 4 
0 otherwise. 

(17) 
Note that similar expressions can be obtained for the 
second order statistics of cepstral components derived 
from inverse discret.e cosine transform (DCT) rather 
than inverse DFT. 

We now argue that the cepstral components cy(n) 
obtained in (1) from the unstable periodogram estimate 
1vkj” of the power spectral density of the signal are 
themselves stable. From (6), if we ignore the additive 
constant term <,,/K, we see that E{cy(n)} corresponds 
to cepstral components obtained from E{ l&l”}. If K 
(and N) is sufficiently large so that E{IFkI’} repre- 
sents the power spectral density of the signal y, then 
E{cy(n)} represent the “true” cepstral components of 
the process y. If q,(n) are considered estimates of these 
“true” cepstral components, then these estimates are 
consistent, since by (14)) the variance of cy (n) tends to 
zero as K -+ 03. This observation is important since it, 
shows that it is not necessary to use a consistent power 
spectral density estimate in order for the cepstral com- 
ponents to be consistent. Thus, cepstrum derived from 
the inconsistent periodogram spectral estimate is not 
necessarily worse than cepstrum derived from a stabi- 
lized smoothed periodogram. 

The fact that the covariance matrix of cepstral com- 
ponents is a fixed signal independent matrix, which 
rapidly approaches a diagonal matrix, is very impor- 
tant in statistical modeling. If the pdf of cepstral vec- 
tors in a given HMM state is approximated by the nor- 
mal pdf, as is commonly done, then only the mean vec- 
tor of that pdf must be estimated from training data 
while the fixed, signal independent, theoretically calcu- 
lated diagonal covariance of this pdf can be used. This 
can significantly reduce the number of parameters that 
need to be estimated from the training data. If the 
fixed diagonal matrix is used instead of being estimated 
from the training data, a reduction by a factor of two in 
the number of estimated parameters is achieved. It is 
demonstrated in Section 3 that using the fixed cepstral 
covariance (17) rather than estimating this covariance 
from training data, has no effect on the performance of 
the speech recognition system studied here. 

The fixed signal independent covariance of cepstral 



components in a given state also implies that when the 
signal is corrupted by noise, then only the mean of 
the cepstral vector is affected while its covariance ma- 
trix remains intact. Hence? if noisy cepstral vectors 
in a given HMM state are continued to be modeled as 
Gaussian: then only the mean vector of this pdf needs 
to be compensated for the noise. 

2.2. Linear Cepstrum Estimator 

The linear MMSE estimator of the clean cepstral vector 
cy given the noisy cepstral vector cL can be obtained 
from inverse DFT of the linear MMSE estimator of the 
log-periodogram of the clean signal. The latter is given 

by 

& = E{Ly}+cov(LCy, Lz)cov-‘(Lz, &)(Lz-E{&}) 

(18) 

where ,Cy~(log(]~c12),... , log(]FK,2]2))T denotes the 
vector of the log-periodogram components of the clean 
signal, and Cz denotes the vector of log-periodogram 
components of the noisy signal. For this estimator, the 
mean vectors E{ Ly} and E{Cz} are given by (2), and 
the covariance matrices cov(Lz, lz) and cov(,!Zy , icz) 
are diagonal with entries given by (3) and (4), respec-’ 
tively. 

3. APPLICATION TO SPEECH RECOGNITION 

The fixed cepstral covariance matrix (17) and the linear 
estimator (18) were tested in speech recognition of the 
ten English digits. We used isolated digits of 55 male 
speakers for training and another 56 male speakers for 
testing, all from the TIDIGITS date base. We have 
used a left-right HMM based system with 11 cepstral 
components for each vector of 200-256 samples of the 
speech signal sampled at 8kHz. The zeroth cepstral 
component was always excluded. No cepstral deriva- 
tives of any kind were used. The HMM for each digit 
had 10 states and 2 mixture components per state. 

We first conducted recognition of clean signals, once 
with cepstral covariance matrices estimated from the 
data, as is usually done, and then by using the fixed 
covariance (17) for all states and mixture components. 
In both cases, the parameters of the Markov chain and 
the cepstral mean vectors for each state and mixture 
were estimated from the data. In both cases we have 
achieved the same average recognition word accuracy 
of 98.75%. This recognition score was obtained when 
the cepstral analysis (1) was applied to Hanning win- 
dowed nonoverlapping vectors of N = 200 samples of 
the clean signals, and DFT of K = 400 was used. Since 
there was no loss in performance when the fixed cep- 
stral covariance matrix (17) was used, we continued to 

use this matrix for all subsequent experiments on noisy 
signals. 

Next, we have tested the linear cepstral estimator as 
a preprocessor to our speech recognition system which 
was always trained on the clean signals. The noise was 
computer generated white Gaussian noise at SNR’s of 
lo-30dB. The key to successful implementation of the 
linear cepstrum estimator is reliable estimation of the 
variances of spectral components of the clean signal 
and the noisy process in each analysis frame which are 
needed in (2) and (5). Such estimator was obtained us- 
ing the window method of spectral estimation. Specif- 
ically, the variances of the spectral components of the 
noisy signal were obtained from 

M-l 

kz, = c w(mMm) w{-j K zkm} (19) 
??a=-(M-l) 

where +z(m) denotes the biased autocorrelation esti- 
mate obtained from a super-frame (longer frame of say 
T samples) which contains the current frame of the 
noisy signal, and wp(m) denotes the window of length 
M < T. The Parzen window was found particulary 
useful. A similar estimator was used for estimating the 
variances of the noise spectral components. The vari- 
ances of the signal spectral components were obtained 
by subtracting iw, from izL and using an appropriate 
floor when the difference becomes non-positive. 

The linear estimator was applied to non-windowed 
frames of N = 256 samples and spectral variances were 
estimated from super-frames of N + 2N/3 samples with 
M = 60. The recognition results for the noisy and 
preprocessed cepstral components are shown below. 

. SNR [dB] 10 15 20 25 30 
Noisy 31.07 50.45 73.75 84.64 91.25 
Preprocessed 88.93 94.36 96.43 97.23 97.95 

In summary, we have demonstrated for the given 
recognition task that using signal independent fixed di- 
agonal covariance matrices did not affect recognition 
accuracy, and linear estimation of cepstral components 
significantly improved performance on noisy signals. 
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