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ABSTRACT

Explicit expressions for the second order statistics of
cepstral components representing clean and noisy sig-
nal waveforms are derived. The noise is assumed addi-
tive to the signal, and the spectral components of each
process are assumed statistically independent complex
Gaussian random variabies. The key resuit developed
here is an explicit expression for the cross-covariance
between the 1us-apeu,xd. of the clean and noisy sxgnals
In the absence of noise, this expression is used to show
that theo cavarianca matriv af ronaéral ameme e oa
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resenting a vector of N signal samples, approaches a

fixed, signal independent, diagonal matrix at a rate

of 1/N 2. In addition, the cross-covariance expression
is used to develop an explicit linear minimum mean
square error estimator for the clean cepstral compo-
nents given noisy cepstral components. Recognition
results on the ten English digits using the fixed covari-
ance and linear estimator are presented.

1. INTRODUCTION

Cepstral analysis has been widely used in signal pro-
cessing. We study second order statistical properties of
cepstral components and apply them to HMM-based
speech recognition in clean and noisy environments.
The noise is assumed additive to the signal, and the
spectral components of each process are assumed sta-
tistically independent Gaussian random variables.
T nen ars s anes e d A ok e e e L

There are many different CEPSI al l.t:pLCbBubd.l:.lUllb of
a given signal vector. The simplest non-parametric rep-

resentation of a vector ¥ = (yo,...,yn-1)7, with dis-
crete Fourier transform (DFT) Y = (Yy,...,Yx-1)7,
to be studied here, is given by

1 2
f{- Zlog \Nilki )exp {j?kn}, (1)

where K > 2N — 1 so that %|Y|? represents the DFT
of linear rather than circular sample correlation of the
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vector y. It is shown in Section 2 that c,(n) is sta-
ble even though it is derived from the unstable peri-
odogram estimate & |Yx|? of the power spectral density
of the signal.

In speech recognition applications, N —dimensional
signal vectors y are represented by L-dimensional cep-
stral feature vectors (cy(n), n = 1,...,L)T, where
L < N. The zeroth component c,(0) is often excluded
when representation of the log-spectrum average is not
desired. The cepstral vectors from a given word in the

hilider Ao
vocabulary are assumed to have the probability den-

sity function (pdf) of an HMM with Gaussian state-
dependent pdf’s. Each state is assumed to have its own
mean vector and diagonal covariance matrix. A theo-
retical justification for attributing diagonal covariance
matrices to cepstral vectors was given in [1].

In addition to providing significant reduction in di-
mensionality, the cepstral representation of acoustic
speech signals captures the spectral envelop of the sig-
nal while suppressing the speaker dependent pitch in-
formation, it reduces the dynamic range of the signal
in a manner similar to that performed by the human
auditory system, and it enables straightforward equal-
ization of transmission channels. All of these useful
properties are in fact a direct consequence of using the
logarithm function [2]. Unfortunately, however, this
nonlinear logarithmic function creates major difficulties
when the recogmzer is trained on clean apcc\,u alsuam
but is used to recognize signals corrupted by additive

noise. In this case the effect of the noise on the cep-

stral representation of the clean signal is rather difficult
to quantify. Furthermore, suppression of the noise in
the cepstral domain requires careful analysis beyond
the standard Wiener filtering theory. These subjects
constitute the main focus of this work.

The key result developed here is an expression for
the cross-covariance between the log-spectra of the clean
and noisy signals. This cross-covariance is given by an
infinite weighted sum of powers of the Wiener filter
for estimating the clean signal from the noisy signal.



Given this expression we first show that the covariance
of cepstral components rapidly approaches a fixed sig-
nal independent constant diagonal matrix. Secondly,
we derive an explicit linear minimum mean square er-
ror (MMSE) estimator for cepstral components of the
clean signal from corresponding cepstral components of
the noisy signal. The fixed covariance allows reduction
in the number of HMM parameters by at least a factor
of two. The linear MMSE estimator can be used as a
preprocessor when the input signal is noisy.

2. MAIN THEORETICAL RESULTS

The derivations of the results in this section can be
found in [2]. Let y, w and 2 denote N —dimensional vec-
tors of the clean signal, the noise process and the noisy
signal, respectively. The noise is additive so z = y +w.
Let Yy, Wi and Zj, respectively, denote k-th normal-
ized DFT components of the signal, noise, and noisy
signal. The normalization is by N'/2 so that |Vi|?
represents power spectral density as opposed to en-
ergy spectral density. The spectral components of each
process are assumed statistically independent complex
Gaussian random variables with zero mean and vari-
ances given by E{|Yi|?} = Av., E{|Wk|*} = M\w, and
E{|Zx|*} = Az, for k = 0,...,K — 1. Note that
the processes themselves need not be strictly Gaussian
as, under certain assumptions, their spectral compo-
nents become statistically independent Gaussian ran-
dom variables as a result of a central limit theorem {3,
Theorem 4.4.1].

2.1. Second-order statistics

The mean and variance of the kth component of the
log-spectrum of the clean signal are, respectively, given
by,

. log(Ay.) — (v — log(%)), k=0, ¥
E{log|Yi|*} = { 1222)\3 B ’(3' Og%:)) :
ke ] 3ty

where v = 0.57721566490 is the Euler constant, and
e = 2.71828 is the natural logarithm basis, and

wa(log T4 = { Zat T ¥
T L k=1,...,% -
3)
where (a)nél -a-(a+1)-(a+2)---(a+n—1). Further-
more, Y ov; ;1; = %. Similar expressions for the mean
and variance of the log-spectrum of the noise and the
noisy process hold. The appropriate expressions are
obtained by replacing Y in (2) and (3) by W and Z,
respectively. The covariance between the kth compo-
nents of the log-spectra of the clean signal and the noisy

process is given by

cov(log | ¥i|?, log | Zk[?)

-{ T G k=0, % @
oz GF k=1, %1

where G denotes the Wiener filter of the spectral com-
ponent Y} given the noisy component Z,

Ay,
Gy = ———. 5
k )\y,' + /\w,e ( )

Several comments are in order:

1. The variance of the kth log-spectrum component
of any of the three processes is the same, and is
given by the constant 72/6 for 0 < k < K/2. A
similar result was reported in [4] where stabiliza-
tion of the log-periodogram using a smoothing
spline was considered. An asymptotic version of
this property (as N — oo) was first shown by
Brillinger [3, Corollary 5.6.3] for the smoothed
periodogram power spectral density estimator of
a strictly stationary process with finite moments
and small dependence span. No explicit assump-
tion that the spectral components are either Gaus-
sian or independent was made [3].

2. In the absence of noise, Aw, = 0, Gx = 1, and
(4) reduces to (3).

3. The covariance function given in (4) for 0 < k <
K /2 is a member of the polylogarithm functions.

n

These functions are defined as Lim(z)é Yooy I
where z denotes here a complex variable. The co-
variance function given in (4) for 0 < k < K/2
equals Li3(Gy) and is known as the dilogarithm
function.

4. Since 0 € Gy < 1, the sums in (4) do not converge
slower than the sums in (3). We found that an
error of less than 1% occurs if the infinite sum for
0 < k < K/2in (3) is truncated to only 61 terms.

The second order statistics of cepstral components
can be derived from the second order statistics of the
log-spectrum. The mean of cy(n) is obtained from in-
verse DFT of (2) and is given by

= L0 27 kn} + =€
E{e,(m)} = % 2 og(Av.) exp{jp=kn} + 26n
(6)
where
210g(92§) ~Kvy ifn=0
€n=1q 2log(%) if n even (7
0 if n odd .



Similar expressions hold for ¢, (n) and ¢,(n)
Tha cavariance of ~.(n) far m1 m — N 7 1 1o
i€ covariaiice O1 Cy\ie) 101 7,1 = v, yIv — 118

given by

cov(cy(n), Cy(m))
= ?lrzk —o Vvevar{log(]Ye[|?)} cos(32kn) cos(ZEkm)

= %%(Q(n+m mod K + O(n—m) mod K))

(8)
where
af1 ifk=0%

U=\ 2 itk £ {0, K) 9)

and forn=0,---,K -1,

K-1

21 S, var(log [Fi[?) exp{j 2o kn) (10)
Qn—KkZ:Bk (log | Yk |") pUK | (10)

Note that g, is the inverse DFT of the variance se-
quence var(log |V |?) weighted by vy. If we define

A= n!l 1
o2 S o~ 45810 (11)

n=1 \U-U,n 1e
2y 1™ 6o 12
I{l—n=1 n2 = 6 ~ L. ( )

then using (3) and assuming K is an even number we
obtain,

I2n1+72(-(no—2n1) ifn=0
On = %(no—Zm) ifn=2,4,.--,K -2
(o ifn=13,,K-1.
(13)
Hence, from (8), we have for n = 0,---, K/2,
var(c,(n)) = cov(c,(n),c,(n))
\~yg\'vJJ AFYNTY YY)
_{ %n1+ég(no—2m) ifn=0% (14)
- L RK}‘}‘W(KQ—ZKZQ 1f0<n<%
and for n,m =0,1,---, K/2, n #m,

cov(cy (n), ¢y (m))
K?-_r(ng -2k1) fn—-m= :i:2,:i:4,---,:i:%
0 otherwise.
(15)

This covariance matrix is “almost” Toeplitz with zero
alternate off diagonals. The deviation from Toeplitz
matrix is at the (0,0) and (K/2,K/2) elements. An
example of the 5 x 5 upper left block of the covariance
matrix corresponding to a vector of length K = 8 is
shown below.

04516 0  0.0403 0  0.0403
0 02460 0 00403 0O
00403 0 02460 O  0.0403 | (16)
) 0 00403 0 02460 0
| 00403 0 00403 0 04516 |

Note that the covariance matrix of the cepstral com-
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off diagonal elements of this matrix approach zero as
1 /V2 T-Tnnr-n for sufficiently laroe K {and hence ]nrrrn
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N ), the cepstral components are uncorrelated and the1r
covariance matrix approaches a diagonal matrix given

by

7 1 x2 _ _n K
74 32 Hn=m=4 o3
cov(cy(n), cy(m)) = %16— if0l<n=mc< %
L0 otherwise
(17)
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second order statistics of cepstral components derived
from inverse discrete cosine transform (DC
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than inverse DFT.

We now argue that the cepstral components c,(n)
obtained in (1) from the unstable periodogram estimate
|Y:|? of the power spectral density of the signal are
themselves stable. From (6), if we ignore the additive
constant term &, /K, we see that E{cy(n)} corresponds
to cepstral components obtained from E{|Y|*}. If K
(and N) is sufficiently large so that E{|Yk|?} repre-
sents the power spectral density of the signal y, then
E‘{cy n)} represent the “true” cepstral components of
the process y. If (,y\u ) are considered estimates of these

“true” cepstral components, then these estimates are

cansistent since by (14). the variance of 2, (n) tends to
CONSISLENL, SINCC Vy (12, LG Vallallll Ol &y 7, 1CNGS

zero as K — oo. This observation is important since it
shows that it is not necessary to use a consistent power
spectral density estimate in order for the cepstral com-
ponents to be consistent. Thus, cepstrum derived from
the inconsistent periodogram spectral estimate is not
necessarily worse than cepstrum derived from a stabi-
lized smoothed periodogram.

The fact that the covariance matrix of cepstral com-
ponents is a fixed signal independent matrix, which
rapidly approaches a diagonal matrix, is very impor-
tant in S'BaElSElCBJ. moaeung 11 me p(]I OI eepstrax vec-
tors in a glven HMM state is approximated by the nor-

mal ndf agic commanly done then aonlv the mean vec-
illal yux as is UULILLIULILY UULIT, LILITIL VLY LT ilivall v O

tor of that pdf must be estimated from training data
while the fixed, signal independent, theoretically calcu-
lated diagonal covariance of this pdf can be used. This
can significantly reduce the number of parameters that
need to be estimated from the training data. If the
fixed diagonal matrix is used instead of being estimated
from the training data, a reduction by a factor of two in
the number of estimated parameters is achieved. It is
demonstrated in Section 3 that using the fixed cepstral
covariance (17) rather than estimating this covariance
from training data, has no effect on the performance of
the speech recognition system studied here.
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components in a given state also implies that when the

sral loa oo e o ol

axsum 8 x,uuupu:u uy noise, taen Only the mean of
the cepstral vector is affected while its covariance ma-

fr\v remaine nr\{-ar-f'
X ICalallls ivacu.
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in a given HMM state are continued to be modeled as
Gaussian, then only the mean vector of this pdf needs
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to be compensated for the noise.

2.2. Linear Cepstrum Estimator

The linear MMSE estimator of the clean cepstral vector
cy given the noisy cepstral vector ¢, can be obtained
from inverse DFT of the linear MMSE estimator of the
log-periodogram of the clean signal. The latter is given

Lo
0y

Ly = E{Ly}+cov(Ly,Lz)cov Lz, Lz)(Lz—E{Lz
(18)

where Ly2(lo o(!‘np) -+ log(|¥k /212))T denotes the
¥ u ) ) Rj2V /) AULTS LalT

vector of the log-periodogram components of the clean

signal, and £7 denotes the vector of log-periodogram
components of the noisy signal. For this estimator, the
mean vectors E{Ly } and E{Lz} are given by (2), and
the covariance matrices cov(Lz,Lz) and cov(Ly,Lz)
are diagonal with entries given by (3) and (4), respec-
tively.

3. APPLICATION TO SPEECH RECOGNITION

The fixed cepstral covariance matrix (17) and the linear
estimator (18) were tested in speech recognition of the
ten English digits. We used isolated digits of 55 male
speakers for trajning and another 56 male speakers for
testing, all from the TIDIGITS date base. We have
used a left-right HMM based system with 11 cepstral
AAAAAAAA £ Al cennban AP O
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speech signal sampled at 8kHz. The zeroth cepstral

comnonant wae alwave aveliuidad N ecanctral deriva-
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tives of any kind were used. The HMM for each digit
had 10 states and 2 mixture components per state.

We first conducted recognition of clean signals, once
with cepstral covariance matrices estimated from the
data, as is usually done, and then by using the fixed
covariance (17) for all states and mixture components.
In both cases, the parameters of the Markov chain and
the cepstral mean vectors for each state and mixture
were estimated from the data. In both cases we have
achieved the same average recognition word accuracy
of 98.75%. This recognition score was obtained when
the cepstral analysis (1) was applied to Hanning win-
dowed nonoverlapping vectors of N = 200 samples of
the clean signals, and DFT of K = 400 was used. Since
there was no loss in performance when the fixed cep-
stral covariance matrix (17) was used, we continued to

)

use this matrix for all subsequent experiments on noisy
signals.

Next, we have tested the linear cepstral estimator as
a preprocessor to our %peeCu u:\,usuu,luu system which
was always trained on the clean signals. The noise was

comnntor oanerated white (Janecian nnice at ANRIa ~F
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10-30dB. The key to successful implementation of the
linear cepstrum estimator is reliable estimation of the
variances of spectral components of the clean signal
and the noisy process in each analysis frame which are
needed in (2) and (5). Such estimator was obtained us-
ing the window method of spectral estimation. Specif-
ically, the variances of the spectral components of the
noisy signal were obtained from

M-1

A= Y

m=—~(M-1)

wp(m)?z(m) exp{— J “km} (19)

where 7z(m) denotes the biased autocorrelation esti-
mate obtamed from a super-frame (longer frame of say
T samples) which contains the current frame of the
noisy signal, and wp(m) denotes the window of length
M « T. The Parzen window was found particulary
useful. A similar estimator was used for estimating the
variances of the noise spectral components. The vari-
ances of the signal spectral components were obtained
by subtracting /\W,! from A z, and using an appropriate
floor when the difference becomes non-positive.

The linear estimator was applied to non-windowed
frames of V = 256 samples and spectral variances were
estimated from super-frames of N + 2N /3 samples with
M = 60. The recognition results for the noisy and
preprocessed cepstral components are shown below.

SNR [dB] 10 15 20 25 30
Noisy 31.07 | 50.45 | 73.75 | B4.64 | 91.25
PreProcessed | 88.93 | 94.36 | 96.43 | 97.23 | 97.95

In summary, we have demonstrated for the given
recognition task that using signal independent fixed di-
agonal covariance matrices did not affect recognition
accuracy, and linear estimation of cepstral components
significantly improved performance on noisy signals.
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