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ABSTRACT 

This article presents some new results concerning recursive 
filters design with approximately linear phase and Chebyshev 
stopband attenuation. The denominator polynomial D(z) of the 
transfer function H(z)=N(zJ/D(z) is used to obtain a maximally 
flat behavior for the delay in the passband, whereas N(t) 
describes equiripple amplitude in the stopband. The approach 
under consideration is based on z-domain concepts. At the end, 
the paper concludes with several detailed examples and graphics 
showing the efficacy of the proposed technique. 

1. INTRODUCTION 

In many applications filters are required to satisly certain 
amplitude specifications and at the same time to approximate 
linear-phase and/or constant group delay in the passband. A 
number of papers have appeared in technical literature 
concerning the subject of linear-phase (or approximately linear- 
phase) digital filters. The design of W transfer functions with 
both maximally flat and Chebyshev group delay has been 
studied by Thiran and others [l, 2, 81. In all these cases, the 
magnitude response was monotonic and therefore not highly 
selective for a given order [3]. The work was extended to cover 
Chebyshev stopband attenuation by Unbehauen (9, lo] and by 
Maria and Fahmy [4]. Also, an optimization procedure has been 
used by Deczky, Saramaki, and Neuvo [ 1,6]. 

It is well known that IIR filters satisfying the desired 
amplitude and phase specifications can be designed in two parts 
[7, 91 : first, the denominator is determined to satisfy the phase 
requirements, then the mirror-image or antimirror-image 
numerator is designed to achieve the magnitude requirements of 
the filter. The same approach is used in [7] where a new class of 
an all-pole transfer timction for IIR synthesis is described. In 
this case three or five degrees of freedom are needed for the 
group delay approximation over the passband. 

The aim of this paper is to apply and extend the approach 
proposed by Unbehauen [9, lo] for design of IIR filters with 
constant group delay and Chebyshev stopband attenuation. Some 
new relations and an examination of the problem will be given. 
Several design examples based on MatLab are obtained with 
some new and interesting conclusions in the output results. A 
generalization for all types of filters (lowpass. highpass, 
bandpass, and bandstop) will be shown. 

II. CONSTANT GROUP DELAY SPECIFICATION 

Let us consider an all-pole transfer function of degree m (7, 91 : 

H(z) = It’ . z (1) 
uo+ulz +...+unzs 

The coefficients ap are to be adjusted in such a way that the 
phase [9] : 

f?(~)=arg[l/H(eJ~*)]. Osw.s;x/T (2) 

approaches a prescribed function a(w) as close as possible. 
Here w is the variable radian frequency and T the time period of. 
the digital filter. 

Our task is to solve the problem of approximating the ideal 
phase function : 

&(w)=r.B) r=collst~0 (3) 

that corresponds to a constant group delay. Replacing w with 
IV=cos(wT/2), it was proved [9], that the following statement 
holds : 
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with -1 5 W 5 1. The left-hand function is approximating odd 
rational function J,,(W) with parameters x2,-, , x?~, and k 

introduced in [9]. From J,,(w) the unknown transfer function 
H(z) can be calculated directly. 

Inserting the prescription (3) into (4) and using : 
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we obtain the following function : 

j-(W) = JiGF.cot q. tad [ 71 (6) 
with parameter 4 = Zr/T+m which must be approximated by 
the function J,,(W). According to Perron [5] J(W) can be 
represented by a continued traction and its m-th convergent is : 

To algorithmize (7) we need a more suitable presentation. At 

first, let us rewrite h(W) as : 

where the polynomials I$,s, can be ‘calculated using the 

following recurrence relation [j] : 
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Fig. 1 Dependence of the group delay from 
degree m for a lowpass filter with rlT= 1 

RY=sy.Ry-,+ry,Ry-? , R-,=1, R,=s, 

ST =sy ST-, +rr.Srm2 , S-,=0, So=1 . 
(9) 

Some closed-form expressions obtained by (9) are shown in 
Table 1, In consequence of the theory of continued fractions [S], 
the phase function &.w) of the resulting H(z) approaches the 
prescription (3) at w=O in the maximally flat sense. 
Furthemlore, it can be graphically determined that increasing 
the order nr, the group delay becomes more flat in the passband 
of the filter (see Fig. 1). 

IIL CHEBYSHEV STOPBAND ATTENUATION 

In this section OUT task is to summarize and extend the approach 
given in [9] with application of different squared-magnitude 
functions Q(a [lo]. We show that this idea works not only 
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Fig.2 Squared-magnitude function Q with equiripple 
behavior in the range [-1.11 

for lowpass but also for highpass, bandpass, and bandstop 
filters. For this purpose, the numerator of an all-pole transfer 
function will be substituted by a mirror-image polynomial which 
does not affect the group delay and guarantees equiripple 
magnitude in a prescribed stopband w, < w < x / T. 

Starting with the timction : 

Q(Z) = H(z)H(z-‘) = 
1 

(a,+a,z +...+a,z”Xa,+a,z-‘+...+a,z-“) 

after transformation w = (z +z-‘) / 2 we obtain : 

em = 

1 
(10) 

$+B, i7 +...+B, iVm 

where Q(eiwT ) = IH(eq* Then, two transformations of 

the frequency are applied consecutively : w = a.w+p and w=( 5 

+c-’ )/2. Parameters a and /? are selected so that the interval in 
which the squared-magnitude function must approximate a 
constant value in the equiripple sense, is stretched into the range 
-1 5 w s 1. Our investigations showed that we can apply the 
following squared-magnitude functions Q(c) [lo] to approxi- 
mate a given lowpass, highpass, and bandstop magnitude : 

-Case2a: Q(o= 
(l+dP:(r)-P;(c) 

Pm-Pm 

-Case .& : e(s) = mo-(l+~)Pxl > 

Pji&PXl 

(11) 

(12) 

where E (cl) is a positive constant corresponding to the 
stopband ripple. Graphically these two cases are shown in Fig.2. 
Values of the parameters a and ,0 for low-pass and highpass ’ 
filters are given in Table 2. The constant 1 was subtracted from 
the original form of Q as we seek for Chebyshev stopband 
attenuation. All necessary mappings of the frequency for low- 
pass, highpass, arid bandstop filters are presented in Fig.3 a, b, 
and c, respectively. For bandstop filters we use Case 2aa with : 

a=W,l2 , /3=W,/2 , 

w,=-(2+w,)/w,, w*=(2-Ws)/Wc ) 
where : ws=w,,+w,, ) w,=w’,,-w,z 

As an alternative approach to that given above, we can 
propose the following method. At first : design of lowpass 
prototype filter and then using of proper linear mapping. For 
lowpass to highpass transfomlation we are able to apply z+ -z, 
lowpass to bandpass : z+ -z’, lowpass to bandstop : z+ z2. For 
bandstop and bandpass filter the resulting order is doubled. As 

these transformations are linear, constant group delay property 
is maintained. 

IV. DESIGN EXAMPLES 

To demonstrate our approach, several design examples were 
produced. The graphical results shown in Fig.4 and Fig.5 
correspond to three highpass filters obtained with different 
values of E and cutoff frequency o, We can see some 
improvement in stopband attenuation when E has minimum 
value (00.05). Also, the amplitude of the all-pole response can 
be improved with adding of extra ripples for the cases with 



numerator degree greater than that of the denominator. We must 
note that in all these cases [9], the denominator should be 

multiplied by Z’ where the value of r ensures an absence of a 

pole at z= O” 

Frequency 

Fig. 4. Case 2aa amplitude response with n1=3 
and numerator degree 4 : a) ~0.1 and 0,=x/2; 

b) ~0.07 and oc=x/2.6; c) FO.05 and o,=rc/3.8. 
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Fig. 5. Pole-zero location of the filters Tom Fig.4. 
(poles ‘x’ are equal for all these cases) 

Fig.6 presents the magnitude and group delay for bandpass 
and bandstop filters obtained by the discussed approach. The 
transfer function for the bandpass filter is : 

Hlz, = 25.826.(-1+1.323.r’-l.323.z’+z6) 
--\-I 

24+144.z’ +336.z’ +336.z6 

If we want to achieve more flat group delay in the passband of 
the filter we need a greater degree nt (according to results from 
Section II). 

CONCLUSIONS 

The proposed design method is intended towards simultaneously 
amplitude and group delay approximation of lIR digital filters. 
We use two different squared-magnitude functions to obtain 
equiripple magnitude behavior in the stopband. A continued 

fraction expansion approach is applied to achieve constant group 
delay in the passband. Our method is unified (with application 
for all types of filters) and gives non-iterative final solution, It 
could be used as an alternative approach to other methods based 
on optimization techniques. Our investigations showed that the 
described method can be successfully extended for the design of 
filters with equiripple passband. 
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Fig.6 Magnitude and group &la!’ for :I bandpiiss (-) 
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