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ABSTRACT 

This paper presents a method for indexing and retrieval of 
multimediadata through texture segmentation, using the Wold 
decomposition. The texture field is assumed to be a re- 

alisation of a regular homogeneous random field. On the 
basis of a 2-D Wold-like decomposition, the field is repre- 
sented as the sum of a purely indeterministic component, 
a harmonic component and a countable number of evanes- 

cent fields. A new rigourous distance measure between tex- 
tures is derived. using Wold parameters. Adopting the MRF 

framework, we construct a segmentation procedure using 
the Wold parameters. 

1. INTRODUCTION 

The access to digital image information is becoming an in- 
tegral part of many multimedia applications today. Efficient 

tools for storage, search and navigation in multimedia liber- 

aries are essential [2,8]. In this paper we address one aspect 
of this complex problem, namely, the development of algo- 
rithms for indexing (labeling) and retrieval of multimedia 

data, based on the properties of the imagery components of 

the stored data record. Indexing and retrieval of the data 

are performed using parametric modeling techniques of the 
imagery data. 

2. THE TEXTURE MODEL 

The presented texture model is based on the results of the 

Wold-type decomposition of 2-D regular and homogeneous 

random fields, [3]. Let {y(n, m), (n, m) E Z’}, be a real 
valued, regular, and homogeneousrandom field. Then g(n, nr) 

can be uniquely represented by the orthogonal decomposi- 
tion 

y(n,m) = w(n: m) + V(R! m) (1) 
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The field {a(n, m)} is purely indeterministic and has a unique 
white innovation driven moving average representation. The 
field {~(n, m)} is a deterministic random field. It can be 

shown that it is possible to exhibit a family of NSHP total- 
order definitions such that the boundary line of the NSHP is 

of rational slope. Let o, ,B be two coprime integers, such that 
(Y # 0. The angle 0 of the slope is given by ban 0 = $‘/a. 
Each of these supports is called rational non-symmetrical 
half-plane (RNSHP). We denote by 0 the set of all possi- 
ble RNSHP definitions on the 2-D lattice, (i.e. the set of all 

NSHP definitions in which the boundary line of the NSHP is 

of rational slope). The introduction of the family of RNSHP 
total-ordering definitions results in the following countably 
infinite orthogonal decomposition of the field’s determinis- 
tic component, [3]: 

The random field {p(n,m)} IS a half-plane deterministic 
field, and {ec,,fi)(n. m)} is the evanescent field correspond- 
ing to the RNSHP total-ordering definition (cr?,3) E 0. 

Since for practical applications we can exclude singular- 

continuous spectral distribution functions from the frame- 

work of our treatment, a model for the evanescent field which 
corresponds to the RNSHP defined by (a! 69) E 0 is given 

by 

qcr,)3)(v4 = ((<Id) 
c sy)(ncl - rn!3) cos ( 

y(Q3) 
i=l 

2;r-&--&(nd + mn) 
) 

+&%3) t (7m - 7723)sin 
( 

2x g&3 + ,,)) (3) 

where the I-D purely-indeterministic processes {s!~‘~)( no- 

nz;3)}, {sy’(ncY-m.s)}, {t~‘+Kr-m3)}, {pyna- 
ma)} are mutually orthogonal for all i! j. k! t. ,i # j. X: # l!, 

and for all i the processes { ~~‘l’~)(ncr-mfi)} and { tf”‘“‘( na- 



rrt.3)) have an identical autocorrelation function. Hence, 

the “spectral density function” of each evanescent field has 
the form of a countable sum of 1-D delta functions which 

are supported on lines of rational slope in the 2-D spectral 
domain. In the following, we assume that the modulating l- 
D processes {~I’~‘~!(1~1(r,,3))} and {tj”‘“‘(n:“.~))} of each 

evanescent field can be modeled by a finite order AR model. 

In this paper, we also assume that the half-plane deter- 
ministic field consists only of the harmonic random field : 

h ( I?. . m.) = 

P 

1 c,, cos ‘+d, + mvp) + D, sin 2a(n+ + mvP) (4) 
p= I 

In general, P is infinite. This component generates the 2- 
D delta functions of the “spectral density”. The paramet- 

ric modeling of deterministic random fields whose spectral 
measures are concentrated on curves other than lines of ra- 

tional slope. or discrete points in the frequency plane, is still 

an open question to the best of our knowledge. 
As stated earlier, the most general model for the purely 

indeterministic component w( n. m) is the MA model. How- 
ever, if its spectral density function is strictly positive on the 
unit bicircle and analytic in some neighborhood of it, a 2-D 
AR representation for the purely indeterministic field exists 

as well [4]. In the following, we assume that the above re- 
quirements are satisfied. Hence the purely indeterministic 
component’s autoregressive model is given by 

II’( n, m) = - c b(k, t)w(n - k, m. - e) + 471, m) 

(0,0)4(k$) 
(5) 

where { !I( n! m)} is the 2-D white innovations field, whose 
variance is g2. In the practical estimation problem, the 
model support is assumed finite. 

Hence. the observed texture field {y(n. m)} is uniquely 
represented by the orthogonal decomposition y( n, m) = 

w(rt: m) + h(rzTm) + C (a,/3)E0 +,p)h 4. Thus. the 
problem of estimating the texture model parameters, be- 

comes one of estimating the parameters of the harmonic and 
evanescent components of the field in the presence of an un- 

known colored noise generated by the purely-indeterministic 
component. jointly with estimating the purely-indeterministic 
component parameters. 

3. DISTANCE MEASURES FOR TEXTURES 

In previous papers [5, 61 we showed that assuming the tex- 
ture tield is a realization of a Gaussian random field with 

mixed spectral distribution, essentially indistinguishable repli- 
cas of the original texture are synthesized from the esti- 

mated parameters. We therefore adopt the Gaussian as- 
sumption for the derivation of a distance measure, as well as 

for the image segmentation application. In this framework 

it is assumed that each observed texture is a realization of 
a Gaussian random field whose mean is related to the de- 

terministic component of the Wold decomposition and the 
structure of its covariance matrix is determined by the pa- 
rameters of the purely indeterministic component. 

More specifically, in this work we have chosen the Kull- 
back distance [7] between two Gaussian models of textures 

D(Pl. P2) = ;(p2 - p~)~(x;’ + C.;‘)(/L:! - //,I) 

+ftr(Cy’ x2 + C, CT’ -21) 

(6) 
Clearly. one is interested in being able to define a dis- 

tance measure, with is invariant to translation. rotation. and 
scaling. Since the observed textures are homogeneous, trans- 

lation affects only the mean function, but not the covariance. 
Scaling and rotation affect both the mean and covariance. 

To achieve the desired invariance, we have implemented the 

following procedure: 

Estimate the parametric model of each texture patch 

introduced to the system. 

Assuming that in each texture the deterministic com- 

ponent has only harmonic components, or only evanes- 
cent components, but not both (which is the case, in 

practice), every texture we inspect is first rotated so 
that its dominant harmonic component is aligned with 
a predefined direction (the x-axis, for example). Sim- 
ilar procedure is applied in the presence of evanescent 

components. 

When scaling is involved, the ratio of the dominant 
harmonic (or evanescent) frequencies of the two tex- 

tures being considered will not be one. Subsampling 
the texture whose dominant frequency is lower, we 
obtain two textures with dominant components of iden- 

tical frequencies. 

Assuming the phase of the texture dominant compo- 

nent is not zero, we crop a sub-picture of the origi- 
nal in which the phase of the dominant component is 

zero. 

Re-estimate the texture parameters to find the param- 
eters of all the model components. 

The next step is to construct the mean and the covariance 
matrix of the Gaussian fieldusing the Wold parameters, in 

order to use the Kulback distance. The construction of the 
mean was done, using the following procedure : 

l Using the deterministic parameters, we are synthetis- 
ing the mean image. 

l Arranging this image in a column vector, it will give 

the mean vector of the Gaussian held. 



The construction of the covariance matrix is as follows : 

l Using only the AR parameters, we are building the 

power sepctral density estimate. 

l Taking the Fourier transform of the power spectral 

density, will give us the autocorrelation fonction. 

JJ 
I,‘2 r(X:. 1) = S(d. v)e:cp[krj(b + lv)]dudv 

-1;2 

(8) 

l Building the covariance matrix with the autocorella- 
tion function. 
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Figure I : Measuring the distance between synthetic textures 

using Kullback’s distance measure. In decreasing order : a) 
Texture H I - the reference texture: b) Texture H I,90 degree 

rotated. c) Texture Hl, translated d) Texture H2, e) Texture 
H 1 -60 degree rotated. f) Texture H4. g) Texture H3 

1. UNSUPERVISED IMAGE SEGMENTATION 

Our goal. in this part of the research, is to employ the Wold- 

based texture model as a tool for segmenting the image into 

its distinct textured regions [I]. The proposed unsupervised 
segmentation procedure models the image using a doubly 

stochastic Gaussian (DSG) model 191. A MRF model is ap- 

plied to model the label tield (which indicates the texture 
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Figure 2: Measuring the distance between Brodatz textures 
using Kullback’s distance measure. In decreasing order : a) 
Texture l7 - the reference texture; b) Texture T8; c) Tex- 

ture l7, 90 degree rotated; d) Texture T4; e) Texture T7. 60 
degree rotated; f) Texture T6; g) Texture Tl. 

to which each pixel belongs) and the 2-D Wold decomposi- 
tion based model is used to model each of the textures (the 

texture model parameters are conditioned on the label field). 

Assume the entire image is composed of an a-priori 

known number, I<, of texture patches. An initial coarse 

parameter estimate is obtained by dividing the image into 

small blocks. estimating the texture AR model parameters 
in each block, and clustering them in the parameter space. 

The clustering is performed using the I<-means algorithm. 

On the regions given by the I<-means algorithm we are esti- 
mating the Wold parameters. These parameter estimates of 
the individual textures are then used for the construction of 

an energy function. This energy function is used in a sim- 
ulated annealing algorithm to obtain maximum a-posreriori 

(MAP) estimates of the label field. The label field estima- 
tion is iteratively performed until the algorithm converges. 

i.e., until the number of label changes in one iteration falls 

below a preset threshold. Example results are shown in fig- 

ure 3. 

The optimal estimates of the label field. from the ener- 
getic point of view is given by : 

where f are the labels and tb are the data. The energy C’(tljf) 

is defined as follows : 



l At each site s, we are taking the patch centered in s 
with respect to a neighboring system -V(s), and we 
are computing its power density spectrum Fd. 

l At the same site .s we are looking for its label fs. Us- 

ing the corresponding Wold parameters we are syn- 
thetising the texture with respect to the same neigh- 
boring system X(s), then the power density spectrum 

F.$ of the synthetic texture is computed. 

l The conditional energy is : 

This energy is equivalent to the model error. Working in 
the spectral domain we are eliminating the phase error. The 
regularisation energy is defined using a Potts model : 

(11) 

Figure 3: Unsupervised segmentation of Brodatz textures: 
Original image (top); Final segmentation, after 100 itera- 
tions (bottom). 
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measure. Thus. the distance measure will be applied in the 
retrieval application, in order to determine how “close” is 
a user supplied texture to a texture in one of the images 

already stored in the multimedia library. In the proposed 

system, each image stored in the library will be segmented 
to its textured and non-textured regions. The parameters of 
each textured region will be stored, and will serve as the 
“indices” to be compared with those of the query texture. 

using the distance measure we have already developed. 

6. REFERENCES 

The indexing and retrieval application will be implemented 
by integrating the texture segmentation and parameteriza- 

tion algorithms described above, with the texture distance 


