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ABSTRACT 

Computing optical flow is one of the most fundamen- 
tal problem to the motion image analysis. Many methods 
have been proposed for comput.ing opt#ical flow! among them 
gradient.-based methods arc t,he most well-known and most 
used. In the paper, a new gradient-based method for the 
computation of optical flow is proposed. In this method, 
opt.ical flow is computed by minimizing a weight,cd least- 
squares error estimator for a constant motion vcct,or model 
in a local spatial neighborhood, where the weight of each 
image location in the neighborhood is det,ermined by its 
multiple constraints. Several experimcnt,s on real and syn- 
thet,ic image sequences have been carried out to verify the 
efficacy and the reliabilit,y of the new method. 

1. INTRODUCTION 

Early days’ comput,er-based vision syst.ems had been 
constrained to stat.ic image analysis due t,o the memory 
and processing limitations of the comput.ers. However: sig- 
nificant advances in computer hardware have enabled the 
computer systems to analyze motion image sequences and 
interpret complex three-dimensional(3D) sccnes[l]. Motion 
image analysis has become one of the most. import.ant and 
most st,uclied subject in the field of comput.er vision dur- 
ing t,he last, two decades because it has many advantages 
comparing to static image analysis. Motion image analysis 
syst.ems are much more comparable to human-vision sys- 
t.ems because man is always in a moving environment or in 
the motion of his own; A motion image sequence provides 
much more information than a single picture and some lost 
information in static images. such as objects’ moving speed 
and 3D structure: etc., may be recovered t,hrough motion 
image analysis. 

Optical flow! t.he two-dimensional motion vectors field, 
arises from the relative motion between an observer and 
objects in the environment.. Once determined, optical flow 
can give useful information about 3D motion structure of 
t.he objects and spatial arrangements of the cnvironment[2]. 
The computation of optical flow is one of the most. funda- 
ment,al and important subject in the field of motion image 
analysis and a wide range of applications, such as robot 
vision, auto-navigation can be its potential beneficiaries. 
However. computing optical flow is still far from complete 
and remains challenging because the computation is int.rin- 
sically affected by such difficulties as mot.ion discontinuities, 
noise in image int,ensity and occlusion between different 

moving objects and 
ary background[3]. 

between moving objects and station- 

Many methods for computing optical flow have been 
proposed and ot,hers cont,inue to appear. Of them, gradient- 
based methods, which compute optical flow from image 
intensity’s gradients, are the most well known and most, 
used[4]. In t,his paper, a new method for comput,ing optical 
flow has been proposed. The new method is the combina- 
tion of t,wo gradient-based methods! one is mult,iple con- 
stra.int,s method and the other is wcight,ed local spat.ial op- 
t,imizat.ion method. In the proposed method, multiple con- 
straints are firstly derived for each image location, then the 
constraints are applied to multiple irnage locations by im- 
plementing weighted least.-squares fit. to a constant model 
of motion vector in each spatial neighborhood. 

The organization of the paper is as follows. In section 
2, we will present multiple constraints method and invcsti- 
gate it,s advantages and disadvantages. In section 3: WC will 
explain weight,ed local spatial optimization method briefly 
and point, out its problems. The new method and its algo- 
rit,hm will be presented in section 4. To verify our met.hod: 
several experiments have been carried out and the results 
are shown in section 6. Finally, the paper will be concluded 
in section 7. 

2. MULTIPLE CONSTRAINTS METHOD 

Gradient-based methods are based on grad&&t constraint 
equation, which relat,es image int.ensity’s gradient,s t.o the 
t.wo components of mot,ion vector 

E,u + E,v + Et = 0, (1) 

where E,, E, and Et are image intensity’s spatial and 
t,emporal gradient.s; u and 2, are mot.ion vector’s two com- 
ponents along z and y axes. Diffcrencing equation (1) u-it,11 
respect t,o 2 and y we obtain t,wo new equations, 

Emu+ E,,v = -Et, 

Eryu+ E,,v = -Et,. (2) 

Added with equation (1)) three constraint equat.ions 
forming an over-determined set can be obt.ained for two 
unknowns u and v [5]: 

A 1 =ii 
( > 

(3) 



Therefore, motion vector G = (u,v)’ at image location 
(cc? y) can be solved as 

C= (.~‘A)-‘A%. (4) 

Mult,iple constraints method has many advantages com- 
paring to other gradient-based methods. For each image 
location, the number of constraints is enough for determin- 
ing motion vector uniquely, so optical flow can be computed 
with high spatial resolut.ion; Multiple constraint,s method is 
able to provide robust computat.ion of optical flow because 
it. is based on a noise-insensitive over-determined syst.em. 

However, there is a fatal problem in t.his met,hod. When 
there are inconvenient or incorrect constraint equations in 
multi-constraints, it is necessary to detect and eliminat,e 
these “ill-posed” constraint,s from further computation oth- 
erwise the computed optical flow will tend to be in low 
reliability. In the method above, however, each constraint 
equation is equally used and no arguments exist to examine 
it,s “well-posedness” 

3. WEIGHTED LOCAL SPATIAL 
OPTIMIZATION METHOD 

Examining gradient constraint equntion (equat,ion (l)), 
WC can see that the equation is in t.wo unknowns (u, v). 
Therefore additional c0nstraint.s are necessary for t,he gradient.- 
based methods which use only gradient constraint equation 

for each image location. 

Weighted local spatial optimization (WLSO) method 
introduced in anot,hcr constraint, that. assumes optical flow 
is locally constant in a small spatial neighborhood. In Lucas 
and Kanade’s[G], optical flow is computed by implementing 
a weighted least-squares fit to a constant motion vector in 
the spatial neighborhood R and minimizing 

c 
,wi2 (E,u + E,v + Et)‘. (5) 

iER 

where wi denotes the weight funct,ion which allocates 
different weights to different. image locations in the neigh- 
borhood. Motion vector is then solved as 

1 
Ii=-- 

A 

1 
‘C, = -- 

A 

WLSO method is famous for its simple structure and 
efficient computat.ion because of it,s implementation of the 
least,-squares method. However, the problem is that the 

least-squares method is computational efficient but, non- 
robust. In this method the quadratic error term weighs 
heavily the contributions to the “opt,imal” solution from 
the data points which have large residual error[7]. Which 
means, whenever the gradient constraints are incorrectly cs- 
timat.ed or there are motion discontinuities in the neighbor- 
hood, the WLSO method will always result in high-error- 
level optical flow. 

4. APPLYING MULTIPLE CONSTRAINTS TO 
MULTIPLE IMAGE LOCATIONS 

In this scct.ion. we will propose a new method for coml- 

put.ing optical flow. The method applies multiple constraints 
t,o multiple image locations with the assumption of local 
constancy of optical flow. First.ly, for each image location 
in a spatial neighborhood, the “well-posedness” of its con- 
straints is examined and image locations whose constraints 
are considered “ill-posed” will be eliminated from further 
computat,ion; Secondly, WLSO method is implemented to 
compute optical flow using the remained image locations, 
and the weights are determined according t.o their compu- 
tational reliabilities. 

The rest of this section is consisted of two parts. Hessian 
matrix: which if used to examine the “well-posedness” of 
image locations’ multi-constraint, will be firstly introduced. 
In the second part, we will present the algorithm of the 
proposed method. 

4.1. Hessian Matrix 

Rewrite equation (2) as 

where the coefficient, matrix at the right side of the equation 
above is denoted as Hessian Matrix 

(8) 

Nagel and Enkelmann pointed out that the numerical 
stability of t,he computation of optical flow is guaranteed 
when the inversion of H is numerically stable (Nagel [8]). 
This condition is fulfilled when the determinant. of H, dfIl? 

is large and the condit,ioning number CH of H is close to 1. 
Since H is symmetric (E,, = EYz), it follows that 

Xmirr 
cff= - 

I I x maz 

where X,,,i,, and X,,, are the two real eigenvalues of H 
with smaller and largest absolute value, respectively. 

Consequently, it is evident that dH large and cH N 1 
imply numerical st,ability in the computat.ion of optical flow 
vectors. 

4.2. Combining Hessian Matrix with WLSO : Al- 
gorithm 

The characteristics of Hessian matrix suggest us a new method 
that. applies muhiple constraints to multiple image locations 



by combining Hessian matrix with Weighted Local Spat,ial 
Optimization method. 

In this method, “well-posedness” of each image loca- 
tion’s mult.iplc const,raints is firstly examined according to 
the value of the determinant of its Hessian Matrix, do; 
after the “ill-posed” being eliminated. opt,ical flow is com- 
puted by using ALSO method, where the weight, of each 
remained location is defined as the conditioning number, 
CH! of its Hessian Matrix. 

The algorithm of the new method is shown as follows: 

1. Given a local spatial neighborhood (9) within which 
optical flow is assumed to be constant,, for each image 
location in the neighborhood we examine its Hessian 
matrix: 

if 

dH < tl t1 : threshold of drr 

then 
exclude the location from furt,her computation. 

elseif 

x mur > knin > t2 tz : threshold of X 

then 

;,,e w,=,[~J,~,“l;~ y;+$( wu)? of the 
oca 

else 
set the weight of the location be zero, w = 0.0. 

2. Repeat step 1. until all the image locations in t.he 
neighborhood have been examined; 

3. Comput,e optical flow within the local neighborhood 
using WLSO method, t.he weight of each image loca- 
tion is defined as the value of CH. 0 

Comparing t,o the original multiple constraints method 
and weighted local spatial opt.imization method, t,he new 
method has several advantages. 

In the new method, Hessian matrix has been used as t.he 
crit,erion to evaluat,e the “well-posedness” or the reliability 
of multiple constraint,s. As Hessian matrix is highly related 
t.o the int,ensit,y distribution around the image location, it 
can be understood that the new met,hod computes optmica 
flow considering not only the motion constraints but also 
t,he image intensity distribut,ion in the image. 

Because of the exclusion of t.he “ill-posed” image loca- 
tions, which always lead to large residual errors, WLSO’s 
least.-squares estimator will be affect.ed less and the method 
is expected to be more robust. Moreover, instead of sim- 
ply giving heavier weights to the cent,er than the periphery 
within the local neighborhood implemented in the original 
WLSO method, the new method gives higher weight,s to the 
image locations whose gradients constraints have higher IN- 
mcrical reliability. 

5. EXPERIMENTAL TECHNIQUES 

To examine the performance of the new met,hod, several 
experiments have been carried out on real image sequences 
and synthetic sequences for which optical flows were known. 
Before presenting the experimental results, we will describe 
briefly the image sequences used in the experiments. 

5.1. Synthetic Image Sequences 

The main advantage of synthetic inputs is that we have t,hc 
access to the true opt.ical flow and can t,herefore quantify 
t.he performance. Our synthet,ic image sequences include: 

Sinusoidal Inputs : This is about a rotat,ing sinusoidal 
plane and the rotating velocity is in’ = 0.5 degrees per 
frame. 

Translating Planers : The sequence is consists of two 
different translat,ing planers. The planar on the left 
is moving with velocity 211 = (0.0, -0.8) pixels/frame 
and the other planar is translating with velocity ~2 = 
(0.0,l.O) pixels/frame. 

rotating sinusoidal plane : : f : 
I 
: : I i 

t,ranslating planers 

Figure 1: Frames from synthetic image sequences and their 
true optical flows 

5.2. Real Image Sequences 

Two real image sequences, shown in fig.2: were also used: 

Dilational Sequence : The sequence was taken while the 
camera moving along it’s line of sight toward the table 
near t.hc center of the image. Image velocities are 
typically less than 1 pixel/frame. 

Hamburg Taxi Sequence : In this street, scene t.here were 
four moving objects: 1) the taxi turning the corner; 
2) a car in the lower left, driving from left to right,; 
3) a van in the lower right driving right, to left; and 
4) a pedestrian in the upper left. Image speeds of ohe 
four moving objects are approximately 1.0: 2.0, 3.0, 
and 0.3 pixels/frame respectively. 

The dilational sequence is taken by the authors and t,he 
Hamburg Taxi sequence was provided courtesy of the Uni- 
versit.y of Hamburg. 



Hamburg Taxi Sequence Dilational Sequence Hamburg Taxi Sequence 

Figure 2: Frames from real image sequences 

5.3. Error Measurement 

Following [4] we used an angular measure of error. Let 
velocities 3 = (u, v)” be represent,ed as 3D direction vectors, 

tiE U2+$+1 (IA, u, 1)‘. The angular error between the true 

velocity 77, and an estimate \< is 

6. EXPERIMENTAL RESULTS 

In comparing the performance of the proposed met,hod and 
two original methods ? we concentrate on computing time, 
error statistics and t,he density of computed optical flows. 

rotating sinusoidal plaid 

Technique 1 C&t(s) 1 Average Error 1 Density 
Tretiak, Paster 5 i.60 58.366” 1 0.9i4 
Lucas, Kanade[G] 3.84 34.777” 0.991 
Proposed method 5.06 19.798” 0.919 

translating planers 
Technique Cost(s) -4verage Error Density 

Tretiak, Paster 5 7.57 4.462” 0.709 
Lucas, Kanade[G] 3.81 0.655” 0.894 
Proposed method 5.20 0.619’ 0.857 

Table 1: Summaries of t,he results on synt,hetic sequences 

From Table 1 we can see t,hat, although there is no 
significant difference of the processing time and the density 
among the three methods, the proposed method provides 
the measurements with the lowest average angular errors. 
That means, our method is able to provide more reliable 
measurements for the computation of optical flow. 

For t,he real image sequences, we compute optical flows 
in three steps. The original sequences were firstly smoothed 
using a 3D Gaussian filter to reduce the existing noise; 
The proposed method was t,hen applied to the smoothed 
sequences for the computation of optical flow; Finally, com- 
puted optical flows were again smoothed with a 2D Gaus- 
sian filter. 

Figure 3: Computed optical flows for real image sequences 

7. CONCLUSION 

In t.his paper, we proposed a new method, which ap- 
plies multiple const,raints to rnultiple image locat.ions, for 
computing opt.ical flow of motion image sequences.In this 
method, optical flow was computed by minimizing a weighted 
least-squares error estimator for a constant motion vector 
model in a local spatial neighborhood? where the weight of 
each image locations in the neighborhood was determined 
by its multiple constraints. 

Efficacy and reliabilit,y of the proposed met,hod were 
verified through several experiments on real and synthetic 
image sequences. 
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