
A METHOD OF OPTIMIZING SOURCE CONFIGURATION IN ACTIVE 
CONTROL SYSTEMS USING GRAM-SCHMIDT ORTHOGONALIZATION 

Futoshi Asano, Y6iti Suzukafand David C. S~mnson~ 

Electrotechnical Laboratory, 1-1-4 Umezono Tsukuba 305. .Japan, asanoQetl.go.jp 
tR.1.E.C. ‘Tohoku Univ., 1.LZ.R.L. Pennsylvania State Cniversity 

ABSTRACT 

In this paper, a method for optimizing the number and 
the configuration of control sources in an active con- 
trol system is proposed. In the optimization process, 
sources are selected one by one so that the correspond- 
ing transfer impedance vector is the most linearly inde- 
pendent. From the results of the simulation, it is shown 
that the optimized configuration yields not only small 
average control error but also small condition number 
in the transfer impedance matrix, which contributes to 
the robustness of the system against the environmental 
change. 

1. INTRODUCTION 

In an active control system, the configuration of the 
control sources is an important factor which greatly af- 
fects its performance. In particular, the performance 
is highly sensitive to the source configuration when 
the system is used in enclosures, since coupling of the 
sources to certain modes plays an important role. One 
approach to optimizing the source configuration is to 
locate the sources so that the cost function in designing 
the control system, that is usually the sum of square- 
errors at the sensors, is minimized (1, 21. Disadvantage 

of this method is that it does not necessarily prevent 
the system from being ill-conditioned. Although an ill- 
conditioned system may show good performance at the 
sensors, it may yield some harmful effects such as emit- 
ting a high level of energy outside the target region. 

The authors proposed an alternative approach, in 
which the source configuration is optimized in terms 
of the linear independence of the transfer impedance 
vector for each source [3]. Sources are selected one by 
one using Gram-Schmidt orthogonalization so that the 
corresponding transfer impedance vector becomes the 

most linearly independent. By employing this method, 
ill-conditioned configurations are automatically avoided 
In this paper! the complete algorithm, including the ex- 

tension to the broadband case, is described. 

2. CONTROL EQUATION 

The control equation of an active sound control system 
can be written in the frequency domain as 

Z(Yk)Q(kdk) = d(aJk). (1) 

For the sake of simplicity, the frequency wk is omitted 
hereafter. The symbol 2 is the transfer impedance ma- 
trix. its element. .Z,I denoting the transfer impedance 
from the Ith control source to the nth sensor. This 
transfer impedance matrix can be written using its col- 
umn vectors as 2 = [zl . . z,v,,] where IV, denotes the 

number of sources. Each column vector corresponds to 
its respective control source. The element ql in q is the 
source strength of the Ith source. The element d, in 
vector d denotes the desired complex sound pressure at 

the mt.h sensor. The system is controlled so that the 

sum of square-error at, the sensors, 

E = &eHe (2) 

is minimized. where the error vector, e! is defined as 
e = Zq - d. The symbol H denotes a conjugate trans- 
pose. 

3. OPTIMIZATION PROCEDURE 

Let, us consider the case when there are NC possible 
source location candidates in the space around the tar- 
get region. It is assumed that the transfer impedance 
vector corresponding to each source location candidate 
is known. Let 7 denote the set of transfer impedance 
vectors of the candidates. ‘T = {zl,. . , z~v,}. The aim 
of the algorithm described in this section is to deter- 
mine the number of control sources iqC (5 N*) and 
the optimum subset of vectors SN, in 7, i.e., S,la = 

{i,;.. 2,~ }. In the optimizat,ion process, sources are 

selected orye 1)~ one from ‘T at each step so that the 
corresponding transft‘r impedance vector is the most 
linearly indc~penclent of the subset of vectors that have 

already he11 4ecteti in the previous steps. 



3.1. Basic Algorithm 

Let us consider the case of the nth step. It is assumed 
that n - 1 candidates have already been selected from 
the 1st to the (n - 1)th steps. The subset of the trans- 
fer impedance vectors selected in the previous steps is 
denoted by S,,-i. The subset of the unused transfer 
impedance vectors at the (n - 1)th step is denoted 
as 7,-l = 7 - &-I. Also, let us denote the or- 
thonormal basis of the subspace spanned by S,,-r as 

u+1 = (211,. . . ,21,-l}. 
In the nth step, the nth impedance vector, i,, is 

selected so that the component of i,, that is perpen- 
dicular to the subspace spanned by S,,-1, is the largest. 
The perpendicular component, Pi! of an arbitrary vec- 
tor -Zi E 7,-i is calculated as 

Ti = %i - p. (3) 

where p is the projection of zi onto the subspace spanned 
by S,-1. The projection p is calculated as 

n-1 n-1 

p = C Pj = C(Wr%i)vj. (4) 

j=l j=l 

where pj is the projection of Z+ onto the orthonormal 
basis Vj E U,-i. The nth source is determined so that 
the norm of T; is maximized, i.e., 

F(z,) = sin(0,) = ““;,-.F” 
%, 

where p, is the projection of Zi onto d as 

.z”d 
--d. p, = d”d 

Csing these. the first vector is determined 

il = arg min F(zj). 
%,ETl 

where The first orthonormal vector is defined as 

J(%i) = Ilrill, (6) 

The vector Ti is a component of Zi, which is perpen- 
dicular to L)n-r, and, thus, is linearly independent of 
previously determined impedance vectors, &,-I. The 

physical meaning of ri is the independent contribution 
of the corresponding source to the control, which can- 
not be substituted by any of the other sources deter- 
mined in the previous steps. The nth orthonormal basis 
vn is then determined as 

The norm of the first impedance vector is then used as 
the initial value of the cost function for the optimiza- 
tion process as .j, = llil]I. 

3.3. Termination of the optimization process 

21” = Tlllrll. (7) 

The relation of these vectors when n = 3 is shown in 
Fig. 1 as an example. The maximized cost function at 

the nth step is denoted as j,, = J(&,). 

In the optimization process. the procedure described in 
Section 3.1 is iterated with n being increased. During 
this process. the cost funct.ion J,, monotonically de- 
creases. The optimization process is terminated when 
the cost function j,, becomes smaller than a certain 
threshold. Jl,,,.. The number of sources2 iqb, is then 

determined as -T-,, = rt, - 1 when .i,, < Jthr. 

3.2. Initial condition 3.4. Recursive Algorithm 

To initiate the process: initial conditions, i.e., 21 and 

‘~1: must be given. In this section, how to determine 
these initial vectors is described. The role of the control 
equation (1) is to find a linear combination of transfer 

Among all possible configurat.ions, there might be con- 
figurations other than the optimum one that satisfy the 

criterion. .i,, < .JthV. These configurations are expected 
to yield perfortuancos similar to that, of the optimum 

Column Subspace 

Figure 1: Relat.ion of vectors. 

impedance vectors that is closest to the desired vector? 
d. Therefore. the first vector is selected so that it is 
closest to d. This is realized by minimizing the angle 
8, between the arbit,rary vector Z, E 7s (= 7) and d. 

The cost function to be minimized is defined as 

(8) 

(9) 

as 

(10) 

(11) 
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Figure 2: Location of control source candidates. The 
filled circles are the sources selected by the optimization 
process for the single frequency case. 

one. Using the above procedure recursively with minor 
modification, these configurations can easily be listed 
up [4]. Listing up of these configurations widens the 
choice of configurations. 

4. BROADBAND EXTENSION 

In this section, the optimization is extended to the 
broadband case. In the broadband case, each source 
candidate is represented by a set of transfer impedance 
vectors of the frequency range of interest, [(u’l~ iu’h]. The 
set of transfer impedance vectors is denoted as Zi = 

{G(W),..., z~(LJ,,)}. In the optimization procedure, 
the optimum set s,vq = (Z1,. . . , ZN,} is selected. 

In the broadband case, the following two cost func- 
tions are evaluated. 

Jaug(Zi) = ’ K( W lII~i(W)Il + . . ’ + ~hllri(~h)ll) (12) 

Jmin(2i) = min(w~llli(W~)ll;.‘,whllTi(~:h)ll) (13) 

The symbol K denotes the number of discrete frequen- 
cies. The symbol Wk denotes an arbitrary weight at the 
discrete frequency Wk. The perpendicular component, 

Ti(Wk), and the orthonormal basis, Vi(Uk): which is re- 
quired for the calculation of fi(Wk), are calculated for 
every discrete frequency separately in the same manner 
as the single frequency case. The cost function, Jatvg, 

is the weighted average norm in the frequency range 
of [wl,wh] and is maximized during the optimization 
process! i.e., 

By using the average norm, the average linear inde- 
pendence of the column vectors are maximized. On 

the other hand, for determining the required number 
of source fiq and terminating the procedure. the cost 

function Jmin is evaluated. When Jmin < Jthrr the 

procedure is terminated. The reason for using Jm;* in- 
stead of ,Jaus is to avoid low linear independence at all 
frequencies. The rest of the procedure is the same as 
that of the single frequency. 
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Figure 3: iBlue of the cost function F(ri). 
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Figure 4: The value of maximized cost function, j, 
(normalized by j1.1 

5. SIMULATION 

5.1. Condition 

As an example of active control, active equalization 
is treated it1 this simulation. To obtain uniform sound 

pressure in the target region (equalization), the desired 
sound pressure vector was set at d = [I . . . llH. -4 two- 
dimensional enclosure with rigid walls, the size of which 
is l.Om (2) x O.lm (y) x 2.0111 (t)? was employed. The 
transfer impedance vectors were calculated by using 
Green’s function for a rigid-wall enclosure [S]. As con- 
trol source candidates. 12 point-sources were located as 
depicted in Fig. 2. The target region was the shaded 
square area. 0.3 111 x 0.3 m. where 64 equally-spaced 
sensors (8 x 8) ivere placed at int.ervals of 4.3 cm. 

5.2. Results 

The tesulbs for the single frequency case (500 Hz) is de- 

scribed. Figure 3 shows the value of the cost. function 

F(zi) for the determination of the first source. From 
this figure. source # 7. for which F(zi) is the smallest, 
was selected. Figure 4 shows the value of the maxi- 
mized cost function. .i,. The threshold, Jthr, was set 
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Figure 5: -4verage error power, l?! for all possible con- 
figurations. The horizontal axis corresponds to the con- 
figuration number (each configuration is numbered in 
increasing order of &.) The symbol %” in the figure 
shows the performance of the optimum configuration. 
For the sake of clarity, the symbol was plotted a lit- 
tle off from the curve. The symbol “0” represents the 
configuration that satisfies the criterion, ,jjqq 2 .Ithr. 

at -20 dB. From this figure, it can be seen that j,, in- 
tersects the threshold when 5 < n < 6. Therefore, the 

optimum number of sources was determined as :qq = 5. 
The optimum configuration selected through this prc+ 
cess is indicated by the filled circles in Fig. 2. The per- 
formance of all possible configurations are summarized 

in Fig. 5. From this figure, it can be seen that the op- 
timum configuration yields small average error power. 
Moreover, all the configurations that satisfy the crite- 
rion, .j,q, > Jth,., show small I?. Figure 6 shows the 

condition number of the transfer impedance matrix 2 
for each configuration. The condition number of the 
transfer impedance matrix is known as an index of the 
robustness of the system against environmental change 
[6]. As can be seen in this figure, all the selected con- 
figurations show small condition number. From this 
figure and Fig. 5: the proposed algorithm selects the 
configurations that have properties of both small aver- 
age error and small condition number. The broadband 
case (400-600 Hz) was also examined by simulations 
and similar results were obtained. 

6. SUMMARY 

In this paper, an optimization method of source config- 

uration in active control system was presented. Sources 
are selected from the candidates one by one so that the 
corresponding transfer impedance vector becomes the 
most linearly independent. The results of the simula- 
tion show that the selected configuration yields small 
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Figure 6: Condition number of the transfer impedance 
matrix for all possiblcl configurations. ‘The horizontal 
axis. the symbols .‘o” and %” are the same as those in 

Fig. 5. 

average error and small condition number. 
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