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ABSTRACT 

Estimation of the instantaneous frequency and its 
derivatives is considered for a harmonic signal with a 
time-varying phase and time-invariant amplitude. The 
asymptotic minimax lower bound is derived for the 
mean squared error of estimation provided that the 
phase is an arbitrary m-times piece-wise differentiable 
function of time. It is shown that this lower bound 
is different only in a constant factor from the upper 
bound for the mean squared errors of the local polyno- 
mial periodogram with optimal window size. 

1. INTRODUCTION 

In this paper we consider the problem of estimating 
the instantaneous frequency (IF) a(t) = d&)/& from 
complex-valued observations 

y(sT) = T(ST) + E(ST), (1) 

r(sT) = Aexp(jcp(sT)) , s = 1,2 ,... N, 

where T is a sampling interval and N is the number 
of observations. The {E(sT)} are independently and 
identically distributed Gaussian complex-valued ran- 
dom variables E E(sT) = 0, E E(sT) B* (ST) = 02, where 
the asterisk means a complex conjugate value. In addi- 
tion, we assume for the sake of simplicity the indepen- 
dence and equal power of Re(&(sT)) and Im(s(sT)). 

The amplitude A is assumed to be given a pri- 
ori, while p(t) is an unknown real-valued time-varying 
phase belonging to the following class of m-times piece 
wise differentiable functions 

3m = cp : sup 52 { t ) (-)(t)l 5 L}. (2) 

Here the derivative R(“-i)(t) = d” is supposed to 
be a piece-wise continuous functiond? 
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The aim of this study is to find a minimax lower 
bound for the mean squared estimation error 

II,+) = E (d-‘)(t) - R(k-1)(t))2 (3) 

for the (Ic-1)-th IF derivative flcL-‘)(t), Ic = 1,. . . , m- 
1, at an arbitrary point t belonging to the observation 
interval (t min,tma). Here &(k-l)(t) is an estimate for 
fl(k-l)(t), &in = 0, t,, = NT. 

Thus the nonparametric IF and its derivatives 
R(k-l)(t), Ic = 1, _ . . ,m - 1, are to be found from 

the observations (1) which are the nonlinear (exponen- 
tial) function of the unknown phase. This nonlinearity 
is a specific feature of the considered problem which 
makes it quite different from the classical linear setting 
of nonparametric estimation. 

A complex-valued harmonic with the time-varying 
phase is a key-model of the IF concept as well as the 
general theory of the time-varying spectrum analysis 
(e.g. [l] [4] [5]). The C ramer-Rao lower bound of un- 
biased IF estimation obtained for different paramet- 
ric models of the signals (e.g., [l] 1121) is a conven- 
tional tool for accuracy characterization of IF estima- 
tors. However, this lower bound is quite useless for the 
considered nonparametric setting of the problem when 
the IF is assumed to be an arbitrary time-varying func- 
tion and the estimation biasedness is a crucial point. 
The minimax lower bounds are used as a measure of the 
best accuracy which could be achieved in nonparamet- 
ric estimation. In this way the minimax lower bounds 
for biased estimation play a role similar to that which 
the usual Cramer-Rao bounds play for unbiased esti- 
mation. 

This paper is a development of [ll] with specifica- 
tion of constants of the minimax lower bounds for esti- 
mation of the IF and its first derivative provided that, 
m = 2, 3 and 4 in (3). This specification is obtained in 
[ 1 l] only for estimation of the IF and m = 2. 



The approach developed in this paper is based on 
the traditional reducing of the nonparametric problem 
to an auxiliary one with a “worth” parametric family 
of functions (see, e.g., [S]) and on the information in- 
equality obtained in [lo] for parameter estimation in 
a ball. Note that the related information inequalities 
have been obtained in [2] [3] (131. However, the inequal- 
ity from [lo] leads to the more precise minimax lower 
bounds. 

This paper is organized as follows. The main propo- 
sition with the lower bounds and discussion are given in 
section II. The local polynomial periodogram (LPP) as 
a nonparametric estimator of the IF and its derivatives 
is presented in section III. It is shown that the derived 
lower bound is different only in a constant factor from 
the mean squared error of the LPP with the optimal 
window size. It proves that the derived lower bound is 
attainable to within a constant factor, and this bound 
cannot be principally decreased. 

2. MINIMAX LOWER BOUNDS 

Proposition 1 ([ll]) Let m > lc 2 1, and 3@-l)(t) be 
an arbitrary estimator for f$-‘)(t) that is a measur- 
able function of observations {y(sT)} (1). Then for any 

fkCd t E (4nin 7 4nax ) the following inequality holds: 

sup Dk(t) 2 Kk,rn 
rpE3?n 

(Lz+l (TzJ-*)* (4) 

as T + 0 and N -+ 00. Here Kk,m is a finite constant 
depending only on k and m. n 

Comments on Proposition 1. 
1. Let the observations be real-valued y(sT) = 

A cos(cp(sT)) + E(sT) with noise variance EE~ = a2/2. 

The corresponding minimax lower bound can be 
given in the following two different forms for the ‘slow’ 
and ‘fast’ varying IF: 

(a) Slow IF (L, ---) 0) 

sup Dk(t) 2 Kk,m 
9pE3m 

(b) Fast IF (L, + 0, T/L% --) 0) 

sup D&) 2 
rpE3ln 

(6) 

u2 

(A12 sin2 p(t) 

The comparison shows that the variance u2 in (4) 
is replaced in (5) by 2a2 and in (6) by the expression 

a2/ sin2 p(t). Thus the minimax lower bound is always 
larger for the real-valued signal in comparison with the 
case of the complex-valued observations. 

There is also a great difference between the cases of 
the low and fast IF. This fact deserves discussion. 

First, let us stress that the nonparametric estima- 
tion asymptotics considered in Proposition 1 assume 
that the number of observations is increasing in a nar- 
row and narrowing neighbourhood of the time-instant 
t. It makes it possible to estimate arbitrary fast varying 
processes. This sort of asymptotics gives the minimax 
lower bound for the real-valued observation in the form 
(6). The minimax lower bound depends on the phase 
p(t) and approaches the infinite value as sin2 p(t) ---) 0. 
The estimates of the frequency are extremely sensitive 
with respect to the noise when measurements are con- 
centrated in a narrow neighbourhood of the peaks of 
the real-valued harmonic. The minimax lower bound 
given by (6) reflects this fact. 

Second, the slowly varying IF makes it possible to 
use observations from a large neighbourhood of the 
point t covering a large amount of harmonic’s periods. 
In this case the minimax lower bound has the form (5). 

2. Calculation of the constant Kk,, is based on the 
function K(T) derived in [lo], where K(T) : [O,oo) + 
[0, 1) is a monotonic increasing function, described by 
its inverse function 7 = T(K) as follows: 

T = arccos (- fi ) 

JcT 
-;, KEE [OJ), (7) 

then [ll] 

&,m = ~a&qW)) x 

Here inf is calculated with respect to an auxiliary vari- 
able p > 0 and an m-times piecewise differentiable aux- 
iliary function $J under the following constraints: 

$Ak’(0) = 1, sup I?+@)(U)] = p, $(u) = 0 V’IU] 2 1. 
u 

(9) 
Note, that the variable p should be sufficiently large 
in order to ensure a non-empty set of functions 3 (9). 
Thus, in order to get the constants KkVrn , the opti- 
mization problems (8)-(g) have to be solved. 

3. The following constants have been found as so- 
lutions of the above optimization problems: 

(a) For estimates of the IF: 

K,,2 = 0.2968, K1,3 = 0.1174, KI,~ = 0.05277. 



(b) For estimates of the first derivative of the IF: 

K2,3 = 0.07872, K2,4 = 0.08208. 

3. THE ACCURACY OF THE LOCAL 
POLYNOMIAL PERIODOGRAM 

The discretetime local polynomial periodogram (LPP) 
Zh(w,t) is introduced in the following form [7]-[9]: 

Ih(a,t) = (Yh(G,t)\2, (10) 

Yh(W,t) = e ph(nT)y(t+nT)exp(-je(nT,3)), 
TlL=-CO 

O(u,ti) = WI . u + . . . + w,-1 . urn-l/(m - l)!, 

ij = (w,w2, . . . . w&’ E P-l 

where Pi 2 0 is a window function and h > 0 is 
a parameter scaling the window size. It is assumed 
that ph(nT) = T/h. p(nT/h), j--“, p(u)& = 1 so that 

C:-,n,(nT) --) 1 as h/T 400. 
The LPP estimator 3(t, h) has been introduced as a 

solution of the following constrained optimization prob- 
lem: 

;I(t, h) = arg war Zh(G,t). (11) 
w 

The components of G(t, h) yield the following es- 
timates: &(t, h) for the frequency Q(t) and (j,+l(t, h) 

for the derivatives R(“)(t) = d’R(t)/dt’, s = 1,2, . ..m- 
2. It is clear that for m = 1 the LPP coincides with 
the short-time periodogram and gives the estimate of 
the IF only. Both the convergence result, Ij(t, h) --) 

a’(t) as h/T -+ 00, 

wO(t) = (f-i(t), R(‘)(t) 7 . . . . i-e2)(t))‘, (12) 

and the asymptotic accuracy of the estimator prove 
that Ih(3, t) as a function of ij concentrates in the point 
GO(t). 

Let us present asymptotic formulas for the covari- 
ante and bias of the estimation error 

A+, h) = w’(t) - ;I(& h), A&@, h) E Rm-‘. (13) 

The following notation is used in what follows: 

S(h) = diag(h, h2, . . . . hm-I), (14 

p = p(u), U = (u, u2/2, . . . . zF1/(m - l)!)‘, 

\k = Jpuu’du - JpmuJpu’du, (15) 

- J p2uuki - Jpudu/p2u’du- 
+i~2~d~~~~td~+iid~,~~d~,~~fd~, 

Proposition 2 Let 3(t, h) be a solution of (ll), T + 0, 

h + 0, h/T -+ 00, and cp E 3m, then the covariance of 
the estimates is as follows 

cm(S(h)Ati(t, h)) = 5 W, 
2 IAl2 h 

(16) 

w = $-l&$-l 

and the upper bound for the estimation bias is of the 
form 

sup IE(S(h)Ab(t, h))l 5 h”b$$L,. 
IpE3m 

(17) 

Theorem 2 is a special case of the results given in 
([9], Proposition 1). 

Comments on Proposition 2. 
1. Let us consider the MSE of estimation. 
It follows from (16) and (17) that the MSE can be 

presented in the form 

sup E@“-‘)(t) - &k(trh))2 2 (18) 
vc3m 

CT2 

2 lAl2 h2k+’ 
T. WJ& + (bk)kh+k) . Lm)2, 

where Wkk is the k-th diagonal item of the matrix W 

and bzjk (a) is the k-th item of the vector b, . 

Minimization of the right-hand side in (18) results 
in the optimal choice of h and gives 

h2m+l -T W,,(2k + 1) U2 
Ok - 

.- 

4(” - k)b:,, (Ai2 La ’ 
k= 1,2 ,..., m-l, 

(19) 
and 

where 

(21) 
This optimal choice of the scale parameter h deter: 

mines a trade-off of bias-variance usual for nonparamet- 
ric estimation. Note that the optimal hok are different 
for estimates of the IF and its derivatives. 

2. The following values are obtained for the con- 
stants Mk,m : 
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where the columns correspond to the rectangular, 
triangular and Epanechnikov window functions, which 

are respectively of the form: p = 1, p = 2( 1 - 2 1~1) 
and p = 3(1- 4u2)/2 for IuI < l/2. 

It is clear from the table that the window choice 
influences the accuracy slightly. 

Let us compare Kk,m to Mk,m. The values of K1,2 

and Ml,2 have quite close values. It proves that for 
m = 1 the LPP, i.e. the short-time periodogram, has 
the accuracy of the IF estimation close to the optimal 
one. Quite close values have also the constants K1,3 

and M1,3. However, K1,4 < Ml ,4 as well as Kz,,,, << 

M2,m for m = 3 and 4. 
3. To the beat of our knowledge the LPP is the 

only estimator of the IF and its derivatives which gives 
the MSE in the form different from the minimax lower 
bound in a constant factor depending only on the order 
of the LPP, the order of the estimated derivative and 
the window p. 

In particular, the usual Wigner-Ville distribution 
enables the estimation bias to be equal to that for the 
short-time Fourier transform (the LPP with m = 1). 
But the variance of the Wigner-Ville is proportional to 

s(l+$) insteadof 6 for the LPP (e.g. [9] [14]). 

4. SUMMARY 

The minimax lower bound is derived for the MSE of 
estimation of the IF and its derivatives provided that 
the time-varying phase is m-times piece-wise differen- 
tiable function of time. The constants of the minimax 
lower bounds are found for estimation of the IF and its 
first derivative provided that m = 2, 3 and 4. 

It is shown that the optimal choice of the window 
size in the LPP estimator of the IF and its derivatives 
results in the mean squared errors which are different 
from the corresponding minimax lower bounds only by 
a constant factor. 
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