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ABSTRACT 

The local polynomial approximation (LPA) of noisy 
data is considered with the new adaptive procedure for 
varying bandwidth selection. The algorithm is simple 
to implement and nearly optimal within In N factor in 
the point-wise risk for estimating the function and its 
derivatives. The adaptive varying bandwidth enables 
the algorithm to be spatial adaptive over a wide range 
of the classes of functions in the sense that its quality 
is close to that which one could achieve if smoothness 
of the estimated function was known in advance. It 
is shown that the cross-validation adjustment of the 
threshold parameter of the algorithm significantly im- 
proves its accuracy. In particular, simulation demon- 
strates that the adaptive algorithm with the adjusted 
threshold parameter performs better than the wavelet 
estimators. 

1. INTRODUCTION 

Suppose that we are given by noisy samples of a signal 

Y(X), 
zs=y(xs)+~,, s=1,2 ,..., N, 0) 

where .sJ i.i.d., E(sd) = 0, E(E~) = 02. It is assumed 
that y(x) belongs to the nonparametric class of piece 
wise continuous m-differentiable functions 

. 

.F = {JY’“‘(X)I I L). 

Our goal is to estimate ys = y(x.) depending on obser- 
vations (z9),“=i with a point-wise mean squared error 
(MSE) risk which is as small as possible. The follow- 
ing 1-s function is used in the standard linear LPA 

(e.g. MWI): 

Jh(X) = &h(Xs - x)(%9 - c=qqxs - q2 (2) 
s=l 
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4(x) = (1,x,x2/2, . . . . xm-l/(m - l)!)‘, 

c = (Co, Cl, . . . . Gn-l)‘, 

where x is the centre and m is the order of the LPA. 
The window Pi = p(x/h)/h is a function satisfying 
the convention properties of the “kernel” estimates, in 
particular, p(Xk> 0, p(0) = max, p(X), p(x) 4 0 as 

b”,’ a<ZZl!h.m 
p(u)& = 1. Here h is a window ‘size’ 

Then minimization of Jh(x) with respect to C 

C( , h) = arg c~ki Jh. -2 (3) 

@ves B(x) k &(x, h) as an estimate of y(x), and &(x) k 
Ck(x, h), k = 1, . . . . m - 1, as estimates of the deriva- 
tives Y(~)(X). These estimates can be represented in the 
form of linear filters 

i&h) = ~gk(x,Xs,h)ys, 
9 

(4 

where 

~gk(x,Xs,h)X1 =k!-bl,k, k,~=o,l,...,m- 1, (5) 
s 

shows that the linear transforms (4) have accurate re- 
productive properties with respect to polynomial com- 
ponents of y(x) up to degree m - 1. 

The linear estimators (4)-(5) are a very popular tool 
in signal processing and statistics with application to a 
wide variety of the fields for smoothing, filtering, inter- 
polation and extrapolation (e.g. [1][3][6][8]) It is well 
known that bandwidth selection is a crucial point of 
the efficiency of the LPA estimators. In particular, the 
essentially varying in x curvature of y(x) requires a 
varying spatially adaptive bandwidth h = h(x). 

This paper is inspired by the novel approach de- 
veloped in [4] ( see also more general results in [5]). 
It is shown that the LPA equipped with the special 



adaptive bandwidth possesses simultaneously many at- 
tractive asymptotic properties, namely, 1) it is nearly 
optimal within In N factor in the point-wise risk for es- 
timating the function and its derivatives; 2) it is spatial 
adaptive over a wide range of the classes of y(x) in the 
sense that its quality is clase to that which one could 
achieve if smoothness of y(x) was known in advance. 
The intersection of the confidence intervals (ICI) of the 
estimates with different bandwidths is proposed in [4] 
for bandwidth selection. 

The multi-window LPA with the data-driven ad- 
justment of the threshold parameter of the ICI band- 
width selection is developed in this paper. It is shown 
that this adjustment results in a very valuable accu- 
racy improvement of the adaptive estimates of y(x). 
The fast MATLAB implementation of the algorithm is 
done. 

The paper is organized as follows. The ICI band- 
width selection is described in section II. The adjusted 
ICI bandwidth selection with the data-driven threshold 
parameter as well as simulation is presented in section 
III. It is shown in particular that the multiwindow LPA 
with the adjusted ICI bandwidth selection achieves a 
better accuracy than the wavelet filters, while it is not 
the c8se for the adaptive algorithm with a fixed value 
of this threshold parameter studied in [4]. 

2. ADAPTIVE BANDWIDTH SELECTION 

Let us present the basic idea of the ICI. 
Assume that 

H={hl<hz<....<hN,} (6) 

is an increasing sequence of bandwidths. Then the con- 
fidence intervals of the estimates QN(x, hi), i = 1,2, . . . . 
form sequences 

Vi = [Li, vi], (7) 

Vi = Qk(X,hi) + 2X(Q)S%(X,hi), 

Li = Bk(X, hi) - ‘JX(Q)st&(X, hi), 

where s&(x, h) = u&g~(x,x8, h) is the standard 
deviation of the estimate and yk(x) E z)i with proba- 
bility p = 1 - Q. Let us call x(a) in (7) the threshold 
parameter. As it follows from the asymptotic accuracy 
analysis (e.g. [3]) the segments Vi narrow and the bias 
of the estimates &(x, hi) grows as i increases. 

Consider intersections of the intervals ‘Di as i = 
1,2, ._. and let i+ be the largest of those i for which the 
segments Vj, j 5 i, have a point in common. This i+ 
determines a data-driven ICI bandwidth as 

h+ = hi+ (8) 

and the adaptive LPA estimator as 

G,+(X) e &(x, h+). 

The adaptive algorithm equipped with the ICI band- 
width selection demonstrates the following convergence 
rate. 

Let xs = s/N, s = 0, 1, . . . . N and x = p In N, with 
a constant p then 

m--C 

n,m(Xh+) = o( 1. 

This convergence rate is different only in the fac- 
tor In N from the optimal MSE obtained provided a 
known smoothness of y(x). It is emphasized that for 
estimating a function of unknown smoothness this fac- 
tor cannot be eliminated [ll]. Thus the adaptive es- 
timate is adaptive in an optimal way to the unknown 
smoothness of the function to be estimated. The op- 
timal bandwidths are different for the estimates of the 
function and its derivatives. 

We wish to note that this bandwidth selection pro- 
cedure requires a knowledge of the estimate and its 
variance only and is much simpler to implement than 
for instance “plug-in” methods which require a knowl- 
edge of the estimation bias (e.g. [3]). 

3. ICI WITH ADJUSTED THRESHOLD 
PARAMETER 

The threshold parameter x in (7) plays a crucial role in 
the performance of the algorithm (6)-(8). Too large or 
too small values of x result in oversmoothing and un- 
dersmoothing data. The standard choices x(cr) = 2 or 
3 corresponding to the probabilities p = 0.95 and 0.99 
are far beyond universal acceptability. The MSE has a 
minimum with respect to x depending in particular on 
the signal-noise ratio, the sampling length N and the 
bandwidth set H. Minimizing x significantly improves 
the accuracy. 

We found that the cross-validation method proves 
to be efficient for finding the optimal x. For the lin- 
ear filter (4) the cross-validation loss function can be 
represented as a weighted sum of squared residuals 

2s -&(xs,h+(xs)) 2 
1 - gk(xs, xcs, h+(x,)) > . (10) 

Thus the procedure (6)-(8) is assumed to be re- 

peated for every x E K, K = {xl, x~,..xN~}, and 

gives the adjusted threshold parameter. 



The cross-validation in the form (10) presents a very 
reasonable and effective selector for x. Our attempts to 
use instead of the cross-validation another quality-of- 
fit statistics, in particular the Cp, Akaike criteria and 
its modifications (see e.g. [7]), which are different from 
ICV only by the used weights of the residuals, have not 
shown an improvement in accuracy. 

Thus the adaptive LPA estimation consists of the 
following basic steps: 

1. Set x = xr, r = 1,2, . . . . Nx and x = x,, s = 
1,2, .., N. 

2. For h = hi, i = 1, . . . . Nh , calculate the estimates 

ti(xs, hi) and 

Vi = min(Di-r,Ui), Li = maX(L;-1, vi), (12) 

GJ = 0, & = 0, 

while Di 2 iii. 
The largest of those i for which Vi 2 Li gives ic, 

the bandwidth (8) and estimate $xs, h+(x,)). 
4. Repeat Step 3 for all zg, s = 1,2, .., N, and xr, 

r= 1,2 ,..., Nx. 
5. Find 2 from (11). 
The used in (7) standard deviation 0 is estimated 

by 

b = {median(]z, - zs-i] : s = 2, .., N)}/0.6745. (13) 

The average & ~,“=,(z~ - ~~-1)~ could also be ap- 

plied as an estimate of g*. However, we prefer a median 
(13) as a robust estimate. 

For the data given on the regular grid the fast imple- 
mentation of the algorithm is done in MATLAB. The 
items of the matrices of estimates Y = (Q(xs, hi))NXN,, 
and corresponding confidence intervals are calculated 
simultaneously for all (x,, hi) and the search for hf (zs) 
is produced as a matrix operation. The algorithm is 
quite efficient even in searching for the adjusted thresh- 
old parameter 2. 

4. SIMULATION 

Let pi, PR and ps be the left, right, and symmetric 
window functions, i.e. ~~(21) = 0 for u > 0, PR(U) = 0 
for u < 0 and ps(u) = ps(-u), and QL, OR, and &S be 
the corresponding estimates of y(z). 

Then the combined LPA estimate 0 can be pro- 
duced in the form 

& = ALGL + AR!ijR + hg.5, (14 

q2 
XL = - 

stdi2 

std-2 ’ 
As = - 

std-2 ’ 
std- 2 = stdL2 + stdi2 + stdi2, 

with the inverse standard deviations used as weights. 
The important feature of the linear combination (14) is 
that the combined estimate 9 again can be considered 
as a linear estimate with the combined weight 

gk(comb) = xLgk(L) + XRgk(R) + xS!?k(S)~ (15) 

where gk(L), gk(R) and gk(s) are weights of the corre- 
sponding left (forward), right (backward) and symmet- 
ric filters (4)-(5). In this case the cross-validation loss 
function in the form (10) can be used for evaluation of 
the combined estimate. 

Thus we arrive at the concept of the LPA filter bank 
which consists of the elementary filters with weights 
gk obtained for the left, right and symmetric window 
functions with different LPA degrees m, reasonably re- 
stricted say to m = 0, 1,2. These combined estimates 
in the form (15) produce sets of possible estimates. 

However, as the combinations in the form (15) does 
not always result in improving of the estimate, the se- 
lection of the best estimate or the stopping rule for the 
combining is a problem. 

We found that the cross-validation in the form (10) 
once more presents a very reasonable and effective se- 
lector. 

The following simulation results are given for the 
filters obtained for the left, right and symmetric rec- 
tangular windows and the linear LPA, i.e. m = 1. The 
considered combined estimates are obtained by com- 
bining two left and right filters or all three filters, in- 
cluding the symmetric filter. We compare the adap- 
tive LPA estimates with the results achieved by the 
wavelet filters on the test functions Blocks and Heavy- 
Sine. These functions, noise, and the conditions of the 
Monte-Carlo statistical modelling are exactly as given 
in Table 2 in ([2], p. 1218). The root mean squared 
errors of estimation are presented in Table 1: 

SRMSE = 

d 

-jj 5 $ ~(Y(x,) - &[j](xs,h+(xs)))2, 
J=l s=l 

where the average over M = 20 simulation runs is cal- 
culated and the superscript [j] indicates the random- 
ness of the estimate for every j - th run. Figures in the 
first column are the numbers N of observations. The 
second and third columns give the SRMSE for the 
LPA estimator respectively with the adjusted thresh- 
old parameter x = var and fixed x = 2.2, as it is used in 
the simulation given in [4]. The fourth column present 
the interval of the SRMSE values obtained in [2] for 
the different wavelet filters. 

It is evident from the table that the developed al- 
gorithm with the adjusted threshold parameter in all 



cases achieves a better accuracy than the wavelet es- 
timators, while it is not true for the algorithm with a 
lixed value of the threshold parameter x. 

The algorithm with the adaptive threshold para- 
meter demonstrates the accuracy improvement around 
1.5-2 times in comparison with the algorithm with the 
fixed value of x. We wish to note that the estimates cor- 
responding to x = 2.2 have a better appearance than 
the ones corresponding to x = uar, but oversmooth 
data. The accuracy comparison is definitely in favor of 
the adjusted x = uur. 

It is emphasized that in the Monte-Carlo simula- 
tion the variance of the adjusted x = var between dif- 
ferent runs is very small, thus the value of x found 
in one simulation run can be used as a fixed value for 
all other runs. It makes a difference with the adap- 
tive bandwidths hi+ which are different for every run. 
Thus while the adaptive bandwidths given by (8) are 
random and smooth noise effects for every sampling of 
observations, the threshold parameter x is much more 
conservative and depends only on some total parame- 
ters of the problem such as the variance of y(x), signal- 
tonoise ratio, and N. 

5. CONCLUSION 

In conclusion we wish to emphasize that the idea of 
the LPA nonparametric estimation equipped with the 
ICI statistic used for the bandwidth selection is quite 
general and very fruitful. It can be modified to prob- 
lems with nonlinear observations. In particular, for 

Y(X) = Aexp(jp(x)) the approach was used in [9] and 
[lo] in order to develop the adaptive LPA estimator of 
the instantaneous frequency ‘p(‘)(x). 

PI 

PI 

PI 

PI 
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Table 1. Root mean squared errors of estimation 
using the LPA and various wavelet methods 

’ N x = uar x=4 Wavelets 

Blocks 

256 0.61 1.56 (0.68-1.20) 

512 0.46 0.92 (0.59-1.12) 

1024 0.33 0.74 (0.47-1.03) 

- 2048 0.25 0.49 (0.41-0.85) 
I r 

I I 
Heavy 

I 256 0.47 0.79 (0.49-0.62) 

512 0.37 0.67 (0.40-0.55) 

. 1024 0.31 0.49 (0.32-0.46) 

2048 0.24 0.34 (0.38-0.61) 


