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ABSTRACT

In this paper, we derive a QRD-LSL interpolation
algorithm that can be used to construct order-recursive
QRD-LSL interpolators based on the exact decoupling
property developed in a companion paper. QRD-LSL
predictors are well known and use past data samples to
predict the present data sampie while the QRD-LSL
interpolator@ use both past and future data samples to
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estimate the present data sam
delay needed for physical realization,

internolators may achieve much better performance than
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that of the QRD-LSL predictors.

1. INTRODUCTION

It is widely known that the QRD-based LSL algorithm
is endowed with a highly desirable set of features including
a fast rate of convergence, excellent numerical properties,
latticelike structure, modularity, and a high level of
computational efficiency [1]{2][3]. As a result, the
performance of the QRD-LSL algorithm in a limited-
precision environment is always superior to that of
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recursive LSL algorithms [3]. The recursive LSL

interpolator was developed in [4][5] and can only be
constructed by first solving the linear m‘cdlctmn

coefficients of all orders. Consequently O(N?) operations
are rcquired, where N is the dimension of the interpolation

filtering problem. More importantly, the effect of

robustness to round-off error is largely diminished due to
the use of the prediction coefficients {6]. In this paper, we
develop a QRD-LSL interpolation algorithm that can be
used to construct QRD-LSL interpolators based on the
exact decoupling property introduced in [7]. The QRD-LSL
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forward and backward prediction errors of all orders. The

forward and backward prediction errors have a smaller
forwar ard er
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dynamic range than the prediction coefficients and are
directly accessible from a prediction error lattice.
Consequently, the coefficients of the QRD-LSL
interpolators are less sensitive to round-off noise than
those of the recursive LSL interpolators developed in [4][5]

and the computational load required by the QRD-LSL
interpolators only needs O(N) operations.

In this paper, matrices and column vectors are set in
uppercasc boldface type and lowercase boldface type
respectively, and scalars appear in plain text type.
Dimensions of matrices and vectors appear as a subscript.
As an exampie, Rgxp(n) and pe(n) denote the f X p matrix
and f x 1 vector respectively. Ogyp and op denotca { x p
null matrix and a column vector of p zeros respectively.
The subscript of scalars represent the order. For example.
ebs(n) is the (p,f)th order interpolation error at time n.
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It can be shown thal an n-by-n orthogonal matrix, Q(n),
f

can always be construcied from one of the C§ orthogonal
basis sets of LS in terpolator s [7] such that it rotates the
data matrix V. :{n) (see (3) of [N into the (N+1Y.hy.
gata matnx Ypn4iin) (see (3) of {/]) mto the (N+1)-Dy
(N+1) matrix Rp,g(n), that is,
r R, n) 1
QMY Nei(m) = l TR J
O(n-N-1x(N+1) |, (1)
where the matrix R.. {n) mav be expressed as R n) =
al p,in3/ J UV LAPTUSSUL &5 [p,
Fi m.n-1) 0 “ee ) > > hee >
x . . ] : t. :
E .. F2@m-ti2n0° - . -
> “ee w FY2me+1,0-1) x x b x
0 0 I”zf(n n 0 O
x .. < = B‘l"‘(nlnl) X e x
R . 0 B',"Z(n -i+1,n-l l) . :
S N R
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@
by choosing the BFBFBF... sequence with p = . The
diagonal elements in matrix Ry, f(n) are defined as follows:
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denotcs either a zero or a nonzero element whose value is
not of direct interest. We refer to the result in (1) as the
modified QR-decomposition for interpolation and refer to
the form in Ry ¢(n) as the lower/upper (LU) triangular
form for a (p,fth order interpolator based on the QRD. A
derivation of (1) and (2) is not included in this paper due to
space limitation. Since there are CL possible sequences
that can be used, the matrix Ry ¢(n) can display cf
different forms all of which, however, contain one f-by-f
lower triangular submatrix and one p-by-p upper triangular
submatrix denoted by Lgxg(n) and Upxp(n) respectively
with zero elements filling the (f+1)st row except for the
(f+1,f+1)th element as shown in (2). For example, when p

] Q)Y s(n) ={ 1’1‘2,2( n) ]

= { = 2, we then hav L On-5x5 |, where
Rz,z(l‘l) =

i Fi%(nn-2) 0 x 0 0

' x  Fi@m-1n-2)) X 0 X
|0 0 W3(n-2) 0 0

| X X x  BlZm-2n2) : X
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TION ALGORITHM

RPOLATION ALGORITHM

In this section we formulate a computationally
efficient as well as numerically stable algorithm for
solving the linear least-squares lattice interpolation
problem within the framework of the modified QR-
decomposition for interpolation. In this algorithm, order-
update as well as time-update recursions for obtaining the
interpolation errors as one additional future data and one
additional past data are taken into account respectively to
estimate the present data are derived. This may be
accomplis'hed by applying a sequence of Givens rotations
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interpolation discussed in the previous section. The
derivation will be proceeded in the following six stages. In
cach stage, either a single Givens rotation or a sequence of
Givens rotations is applied.

1. For convenience, we may let n = n-2 in (3) of [7] and
multiply both sides of (3) of [7] by A"*(n-2), where
A(n-2) = diag[An-3, An-4_ . 1]. This yields

A" (n-2)eb t(n-£-2) = A H(0-2)Yno1(n-2)bp e(n-£-2). (4)
We then apply a sequence of N Givens rotations that define
the (n-2)-by-(n-2) orthogonal matrix Q(n-2) to transform
Y n+1(n-2) into matrix

( Log(n-2)
Rpi(n-2) = ofF

pen-2) Reg(n-2) |
Hnf2)  of
prp(n-’Z)J that is

L Rpxt(n-2)  pp(n-2)

in the LU triangular form for a (p.f)th order interpolator as
shown in (2) with y(n-2) being the most receni daia sampic
used. According to (1) and (4), we may thus write

/ — NI /s_ 0\
\ll-L)cp,f\u-l-/.)

R -2
-2)[ pen-2) ]bp,r(n-f-2)
| O@N-3xn+1) | (5)

Note the matrix Rp f(n-2) can automatically generate the

optimum interpolation coefficients in by ¢(n-f-2) by
using the back substitution.

2. If we also apply the transformation produced by Q(n-2)
10 the 1-by-(n-1) data vector yT(n-1) = [y(1) y(2) ... y(n-
1)] and 1-by-(n-2) data vector yT(n-N-3) = [0 ... 0 y(I) ...
y(n-N-3)}, which are the data vectors containing next {uture
and next past data samples respectively to be inciuded in
order to obtain the order-updated recursion for the
interpolation error,1we thus find

1 !
A (@-1) y(n-1) =
Q(n-2) ]

. . . "
y(1),pf (n-1),AN+1(n-1),p§ (n-1 >,v£~.3(n—1>] (6)

—

L
[ n-2)/2

Q(_n-2) A"*(n-2) y(n-N-3) =
' ‘ ' , T
[pP (n-2),A%+1(n-2),p} (n-z),v.!*.N.a(n-z)] , )

where both A§+,(n.1) and A§+1(n-2) arc auxiliary
parameters which will be used later to obtain the
intermediate prediction errors. By appending both
transformed data vectors obtained in (6) and (7).

regnectivelv. ag the leftmost column and richimost column
respecuvely, as the leftmost column and n galimaost ¢

A1/2(n_2 Rpi(n-2) 1

of the matrix [ Om-N-3xN+1) | In (5), together
with the new data sample vector for time n at the bottom
row, we obtain an expanded mairix D{n}:

D(n) =
A(n-l)/Zy(l) oir 0 Og 0
)»mpf(n-l k“fo(n-Z) )wmpr @-2) X“Rm,(n-Z) )\mpf‘l(nd)
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annihilate all the elements in the bottom row of the matrix
D(n) except for the (n,1), (n.f+2), and (n,N+3) elements.
These rotations include a combination of a sequence of
Givens rotations (for "F"s) proceeding leftwards from the
clement (n,f+1) to the element (n,2) and a sequence of p



Givens rotations (for "B"s) proceeding rightwards from the
element (n,f+3) to the element (n,N+2) with the order of
annihilating the elements being performed in accordance
with the sequencing chosen (e.g., BFBFBF...) to preserve
the LU triangular form for an interpolator. For example, if
the sequence BFBFBF... is chosen, then the elements in
the following order: (n,f+3), (n,f+1), (n.f+4), (n.f),
(n,f+5), (n,f-1),... will be annthilated successively. Such a
sequence of N Givens rotations defines the n-by-n
orthogonal matrix L{(n) that transforms the matrix D(n)
to matrix E(n) (i.e., L(n)D(n) = E(n)). As a result of
this transformation, only the following elements in matrix
D(n) change: Those elements from the 2nd row to the
(f+1)th row would be time-updated to be

[pF(n) Lea(n-1) pi(n-1) Re(n-1) pP(n-D];  those
clements from the (f+3)th row to (N+2)th row would be
time-updated to be .

pE(n) Rpa(n-1) pp(n-1) Upg(n-l) p§(n-1)], and
the clements at the bottom row of the matrix E(n) can be
shown to be

{eRsi(nn-f-1) of epnf-1) of eRui(n-1nf-1D].

4. A single Givens rotation that annihilates eb(n-f-1) at
the bottom row of the matrix E(n) is applied such that the
intermediate forward and backward prediction errors and the
forward and backward prediction errors of order (N+1),
respectively, can be related. We may thus write

|— It

|

! cin(n- 1} syN(n-1)

E(n) = F(n)

i In-g2

I. ~sp.N(n-1) anin-1) )]
As a result of this transformation, the (f+2)th row of
matrix E(n) becomes

[A{m(n) of I}l,{%(n-f-l) o AEH(n—l)} and the bottom

row of E(n) becomes [eﬁn(n) of 0 of eR+1(n-1)] . The
rest of elements of E(n) remain the same. By using (9),
the interpolation cosine and sine parameters can then be
defined as

A1 (n-1-2)

CcIN(n-1) =
Tp(n-f-1) W
l -1-
sin(n-1) = _el%fﬂﬂ
Ip.f(n-f-1) )
where Ip A(n-f-1) = Alp f(n-f-2) + (e{’.t(n-f—l))z 2

is the time-updated recursion for the minimum weighted
sum of the interpolation error square. Again by using (9),
we obtain the following relations:

efie1(n) + A %sin(n-1 )Alrin(n-l)
ciN(n-1) (13)

eNei(nn-f-1) =

and

eRei(n) + A sy n(m)ARL (- 1)

e§+](n,l’l-f) =
cin(n) . (14)
where .
Afi(n) = A'ZAR41(0-1) + sin(-DeRi(n)
cin(n-1) (15)
and .
AE iy = M AR @D + sin(eki ()

cin(n) (16)
Equations (13) and (14) that correspond to (8) and (7) of [7]
respectively will be used to compute the order-updated
recursions for the interpolation error in stage 6.
5. The order-update recursion for the interpolation error as
one additional future data sample is used can be obtained by
applying an n-by-n orthogonal matrix P(n) to matrix
E(n), that is, P(m)E(n) = I(n). The matrix P(n)
represents the combined transformation produced by a
sequence of (n-N-2) Givens rotations which has the
following two effects: (a) annihilating all the (n-N-3)
elements of vector XI/ZV;EN._a(n-l) in the first column of

matrix E(n) and (b) rotating the element k”zArfm(n-l) in
the first column of matrix E(n) into the (1,f+2) clement
of the matrix. As a result, the first row of matrix E(n)
becomes [A'"“FN7i(n-1) of Xl/zp;'f,m(n-]) of X1, where
Frlq/fl(n-l) is the minimum sum of the forward prediction
error square and Phs1(n-1) is an auxiliary parameter.
Furthermore, the upper-left (N+2)x(N+2) submatrix ol
I(n) turns out to be in the LU triangular form for a
(p.f+1)th order interpolator.

6. We then apply one single Givens rotation to I(n) so as
to annihilate ef41(n,n-f-1) at the bottom row of I(n) and
obtain

[ crNs(n) SE.N+1(n)

In-2 I(n) =J(mn)

—SE,N+1(n) CEN+1(n) (17)
As a result of this transformation, only the first row and
the bottom row of matrix I(n) would change and they
become [FNA1(n,n-f-1) of phirci(n) of x]and
[0 of ebssi(nf-1) of X] respectively, where x denotes
an element whose value is not of direct interest to us. This
transformation defines the following intermediate forward
cosine and sine parameters:

A2ENZ (n-1,n--2)

cenvi(n) = =2
En+i(n,n-f-1) )
SF.N+1(n) = %(_ll,_rl-f;l)
Fn+i(n,n-f-1) )
where

Frne1(nn-f-1) = AFns1(n-1,0-£-2) + (Ri(nn-£-D)F (20)
is the time updated recursion for the minimum weighted



sum of the intermediate forward prediction error square.

Again by using (17), the order-update recursion for the

interpolation error as one additional future data sample is

used can then be obtained by

elp,m(n-f-l) =

crneimehan-f-1) = A 2se i (WP i (n-1) @1

and the time update for computing its interpolation

auxiliary parameter is

PE £r1(n) = A2 CE N1 (M)P5 £41(n-1) + sENe1(Meba(n-f-1)(22)
The order-update recursion for the interpolation error as

one additional past data sample is used can be similarly

obtained. We summarize the final results without deriving

them:

eb1.4n-f) = cpNw1(n)ebAn-f) — A5k a1 (m)pBersn-1)(23)

pBern) = A'%ch a1 ()pRerAD-1) + sBNei(M)ehlnf) (24)

where

A 2BN2 (n-1,n-£-1)

cBN+1(n) = T
BN+i(n,n-f) 295)
sy = o)
Bn+1(n,n-f) (26)

which defines the intermediate backward cosine and sine
parameters by using
Bwns1(n,n-f) = ABn+1(n-1,n-f-1) + (e§+1(n,ﬂ-f))2 @7
Equations (10) — (16), and (18) — (27) constitute the
QRD-LSL interpolation algorithm. Tq initialize the
algorithm, at time n=0 we set AL(0) = AB(0) =0 for all m
and p5.+(0) = p§(0) = O for all p and f. Note that the total
number of computations needed for the computation of a
(p.f)th order interpolation error is proportional to O(N)
including the computation of the prediction errors, where
p+f = N. This is in contrast to the O(N2) computations
needed by the algorithms developed in [4][5].

4. COMPUTER SIMULATIONS

In this section we describe a computer simulation
cxperiment which compares the performances of the QRD-
LSI. prediction and QRD-LSL interpolation using the
QRD-LSL interpolaticri algorithm. For purposes of
comparison, we use an AR(2) data process defined as y(n)
+a| v(n-1) + a» y(n-2) = €(n), where the driving process,
€(n), is a computer gencrated sequence which simulates a
zero-mean Gaussian white noise process with variance ¢?.
The symbol < > is used to denote a 200 sample ensemble
average. For convenience, the AR parameter values are
from [3, p.351]. The results of the simulations are
presented in Figure 1 corresponding to an eigenvalue
spread of 100 using a logjg scale. In this figure, the
ensemble-averaged squared errors for e5(n) and efi(n) for
0 <n <151 and eb2(n-2) for 2 < n < 153 were computed
over 200 trials each. Each trial used an independent
realization of the white-noise process €(n). Figure 1 clearly

shows that interpolation yields smaller steady-state values
of the average squared error (about 7 dB) than prediction
does.
5. CONCLUSIONS

This paper shows that the QRD-LSL algorithm that
combines the good numerical properties of QR-
decomposition and the desirable features of a lattice
structure can be extended from linear prediction to linear
interpolation. The simulation results reveal that the QRD-
LSL interpolation, which makes better use of the
correlation between the nearest neighboring data samples
than the QRD-LSL prediction, may achieve much better
performance than that of the QRD-LSL prediction.
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