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ABSTRACT 
In this paper, we derive a QRD-LSL interpolation 

algorithm that can be used to construct order-recursive 
QRD-LSL interpolators based on the exact decoupling 
property developed in a companion paper. QRD-LSL 
predictors are well known and use past data samples to 

predict the present data sample while the QRD-LSL 
interpolators use both past and future data samples to 
estimate the present data sample. Except for an overall 
delay needed for physical realization, QRD-LSL 
interpolators may achieve much better performance than 
that of the QRD-LSL predictors. 

1. INTRODUCTION 
It is widely known that the QRD-based LSL algorithm 

is endowed with a highly desirable set of features including 
a fast rate of convergence, excellent numerical properties, 

latticelike structure, modularity, and a high level of 
computational efficiency [1][2][3]. As a result, the 
performance of the QRD-LSL algorithm in a limited- 
precision environment is always superior to that of 
recursive LSL algorithms [3]. The recursive LSL 
interpolator was developed in [4][5] and can only be 
constructed by first solving the linear prediction 
coefficients of all orders. Consequently O(N2) operations 
are required. where N is the dimension of the interpolation 
filtering problem. Marc importantly, the effect of 
robustness to round-off error is largely diminished due to 
the use of the prediction coefficients [6]. In this paper, we 

develop a QRD-LSL interpolation algorithm that can be 
used to construct QRD-LSL interpolators based on the 
exact decoupling property introduced in [7]. The QRD-LSL 
interpolation algorithm requires only the computation of 
forward and backward prediction errors of all orders. The 
forward and backward prediction errors have a smaller 
dynamic range than the prediction coefficients and are 
directly accessible from a prediction error lattice. 
Consequently, the coefficients of the QRD-LSL 
interpolators are less sensitive to round-off noise than 
those of the recursive LSL interpolators developed in [4][5] 

and the computational load required by the QRD-LSL 
interpolators only needs O(N) operations. 

In this paper, matrices and column vectors are set in 
uppercase boldface type and lowercase boldface type 
respectively, and scalars appear in plain text type. 
Dimensions of matrices and vectors appear as a subscript. 
As an example, Rkp(n) and p&n) denote the f x p matrix 

and f x I vector respectively. Ofi,, and oP denote a f x p 

null matrix and a column vector of p zeros respectively. 
The subscript of scalars represent the order. For example. 

e’r.&r) is the (p,f)th order interpolation error at time n. 

2. MODIFIED QRD FOR INTERPOLATION 
It can be shown that an n-by-n orthogonal matrix, Q(n), 

can always be constructed from one of the Cf; orthogonal 

basis sets of LSL interpolators 171 such that it rotates the 
data matrix YN+l(n) (see (3) of [7]) into the (N+I)-by- 

(N+l) matrix R&n), that is, . 

Q(n)Y N+l(n) = Rp.d n) 1 O(n-N-l)x(N+I) , (1) 
where the matrix Rp,r(n) may be expressed as R,,,r(n) = 

G-9 
by choosing the BFBFBF... sequence with p = f. The 
diagonal elements in matrix R,,dn) are defined as follows: 

I;!?( n-f) = ($, (e6,r(i-f) )2)“‘, 

Fz2( n-j,n-f) = (ii, (&(i-j j-f))‘)“‘, 



Bk(n-j,n-f) =(ii,(&i-j,i-f))?)“2, 
The symbol x in (2) 

denotes either a zero or a nonzero element whose value is 
not of direct interest. We refer to the result in (1) as the 
modified QR-decomposition for interpolation and refer to 

the form in R,,f(n) as the lower/upper (LU) triangular 

form for a (p,f)th order interpolator based on the QRD. A 
derivation of (1) and (2) is not included in this paper due to 
space limitation. Since there are CL possible sequences 
that can be used, the matrix Rp,f(n) can display CR 

different forms all of which, however, contain one f-by-f 

lower triangular submatrix and one p-by-p upper triangular 
submatrix denoted by L&n) and U,,,(n) respectively 

with zero elements filling the (f+l)st row except for the 

(f+l ,f+l)th element as shown in (2). For example, when p 

= f = 2. we then have QOYs(n) = ~~~~~ , where [ 1 

in the LU triangular form for a (p.f)th order interpolator as 
shown in (2) with y(n-2) being the most recent data sample 

used. According to (1) and (4) WC may thus write 

= 1\“2(n-2 i bin-2) 1 b&n-f-2) 
1 O(n-N-WN+I) ] . (5) 

Note the matrix Rp,fin-2) can automatically generate the 

optimum interpolation coefficients in bp,f(n-f-2) by 

using the back substitution. 

2. If we also apply the transformation produced by Q(n-2) 
to the I-by-(n-l) data vector yT(n-1) = [y(l) y(2) . . . y(n- 
l)] and I-by-(n-2) data vector yT(n-N-3) = [0 0 y(l) . . . 
y(n-N-3)], which are the data vectors containing next future 
and next past data samples respectively to be included in 
order to obtain the order-updated recursion for the 
interpolation error, we thus find r 7 

X 

‘*I(n-2) 
X 

X L I 1 

(3) 
3. QRD-LSL INTERPOLATION ALGORITHM 

In this section we formulate a computationally 
efficient as well as numerically stable algorithm for 
solving the linear least-squares lattice interpolation 
problem within the framework of the modified QR- 
decomposition for interpolation. In this algorithm, order- 

update as well as time-update recursions for obtaining the 
interpolation errors as one additional future data and one 
additional past data are taken into account respectively to 
estimate the present data are derived. This may be 
accomplished by applying a sequence of Givens rotations 
directly to the result of the modified QR-decomposition for 
interpolation discussed in the previous section. The 
derivation will be proceeded in the following six stages. In 
each stage, either a single Givens rotation or a sequence of 
Givens rotations is applied. 
1. For convenience, we may let n = n-2 in (3) of [7] and 

multiply both sides of (3) of [7] by A’12(n-2), where 
A(n-2) = diag[hn-3, hn-4, . . . .l]. This yields 

A”2(n-2)eQ.f(n-f-2) = A”2(n-2)YN+1(n-2)bp,f(n-f-2). (4) 

We then apply a sequence of N Givens rotations that define 

the (n-2)-by-(n-2) orthogonal matrix Q(n-2) to transform 
Yx+l(n-2) into matrix 

Ld n-2) pd n-2) Rncp( n-2) 

Rp.d n-2) = 

: 

07 I;(?( n-f -2) OP’ 

R,d n-2) pP( n-2) U PxP( n-2) I that is 

I 
I I 

‘h”2(n-l) y(n-1)= 

Q(n-2) 1 

[ 
1 (n-2v2 

‘I 

c y(l),pr.‘(n-l),A~+,(n-l),ppF(n-l),v,F.~.~(n-l) 1 (6) 
and 

Q(n-2) A”2(n-2) y(n-N-3) = 

[ 

T 

pp’(n-2),AE+l(n-2),pf’(n-2),vhdn-2) , 1 
where both AE+i(n-I) and Ai+i(n-2) arc auxiliary 
parameters which will be used later to obtain the 
intermediate prediction errors. By appending both 
transformed data vectors obtained in (6) and (7). 
respectively, as the leftmost column and rightmost column 

of the matrix Ai’2(n-2[ O~~~~~i) ] in (5). together 
with the new data sample vector for time n at the bottom 
row, we obtain an expanded matrix D(n): 
D(n) = 

i”*A~+,(n-I ) oT h”$$(n-f-2) OJ ii”A~+l(n-2) 

~‘Rd@-l) h”*R&n-2) hi’*pp(n-2) j.“‘u,,(n-2) )i’cp;(n-2, 

hU2vL4(n-I) Qn-~4p3 Old-I %+3’xf li’i’v/Lx..<(n-2 

y(n) y(n-l)... y(n-f-1) yh -N-2) 

(8) 
3. We then apply a sequence of Givens rotations to 
annihilate all the elements in the bottom row of the matrix 

D(n) except for the (n,l), (n,f+2), and (n,N+3) elements. 
These rotations include a combination of a sequence of f 
Givens rotations (for “F”s) proceeding lcftwards from the 
element (n,f+l) to the element (n,2) and a sequence of p 



Givens rotations (for “B”s) proceeding rightwards from the 
clement (n,f+3) to the element (n,N+2) with the order of 
annihilating the elements being performed in accordance 
with the sequencing chosen (e.g., BFBFBF...) to preserve 

the LU triangular form for an interpolator. For example, if 
the sequence BFBFBF... is chosen, then the elements in 

the following order: (n,f+3), (n,f+l), (n,f+4), (n,f), 
(n,f+5), (n,f-I),... will be annihilated successively. Such a 
sequence of N Givens rotations defines the n-by-n 
orthogonal matrix L(n) that transforms the matrix D(n) 
to matrix E(n) (i.e., L(n)D(n) = E(n)). As a result of 

this transformation, only the following elements in matrix 
D(n) change: Those elements from the 2nd row to the 
(f+ 1 )th row would be time-updated to be 

[pF’(n) L&n-l) pr(n-1) Rti,(n-l) pP’(n-I)]; those 
elements from the (f+3)th row to (N+2)th row would be 

time-updated to be 

rpf(n) R,dn-I) p,(n-1) UP&n-1) p$(n-lj], and 

the elements at the bottom row of the matrix E(n) can be 
shown to be 
[eh+r(nn-f-l) 0T eb.l(n-f-l) 0: eR+t(n-In-f-lj]. 

4. A single Givens rotation that annihilates e’,.An-f-l) at 
the bottom row of the matrix E(n) is applied such that the 
intermediate forward and backward prediction errors and the 
forward and backward prediction errors of order (N+l), 

respectively, can be related. We may thus write 

I If+’ Cl&,- 1 ) SlNb 1) 

In-h? 
E(n) = F(n) 

I 

I --sl.N(n-l) ‘IN@-1) _ (3 

As a result of this transformation, the (f+2)th row of 
matrix E(n) becomes 

[ AL+,(n) oT I$n-f-l) 0: Ai+r(n-I) 1 and the bottom 

row of E(n) becomes [e!%+,(n) OT 0 0: eR+r(n-1)] . The 
rest of elements of E(n) remain the same. By using (9), 

the interpolation cosine and sine parameters can then be 
detined as 

c,.N(n-l) = h”*IA!bf--2) 
I$(n-f- 1) 

e1 An-f-l) 
SI.N(n- 1) = .!: 

(10) 

Ilf(n-f-l) (11) 
where I&n-f- 1) = hL&n-f-2) + (eL,t-(n-f- I))* (12) 
is the time-updated recursion for the minimum weighted 
sum of the interpolation error square. Again by using (9), 
we obtain the following relations: 

eh+r(n.n-f-l) = 
eK+r(n) + h”*Sl.N(n-1 )AFN+I(n-l) 

Cl,N(n-1) (13) 

eh+,(n n-f) = eR+l(n) + ~“*sI,N(n)Ak~(n-1) 

where 
CI.N(II) (14) 

Ag+,(n) = h”2Ak+l(n-l) + sI.N(n-1)&+1(n) 

and 

h 
112 B’ 

Ai+l(n) = 
h+1(n-1) + sI.N(n)eR+l(n) 

CI.N(n) (16) 
Equations ( 13) and (14) that correspond to (8) and (7) of [7] 
respectively will be used to compute the order-updated 
recursions for the interpolation error in stage 6. 
5. The order-update recursion for the interpolation error as 

one additionalfurure data sample is used can be obtained by 
applying an n-by-n orthogonal matrix P(n) to matrix 
E(n), that is, P(n)E(n) = I(n). The matrix P(n) 
represents the combined transformation produced by a 
sequence of (n-N-2) Givens rotations which has the 
following two effects: (a) annihilating all the (n-N-3) 

elements of vector h”*v&s(n-I) in the first column of 

matrix E(n) and (b) rotating the element h”*Ai+r(n-1) in 
the first column of matrix E(n) into the (l,f+2) clement 

of the matrix. As a result, the first row of matrix E(n) 

becomes [h”*Fr??r(n-1) oT h”*pC;‘,f+t(n-1) or Xl, where 

Fr$?t(n-I) is the minimum sum of the forward prediction 

error square and pf;.r+t(n-1) is an auxiliary parameter. 
Furthermore, the upper-left (N+2)x(N+2) submatrix ol 
I(n) turns out to be in the LU triangular form for a 

(p,f+l)th order interpolator. 
6. We then apply one single Givens rotation to I(n) so as 

to annihilate &+r(n,n-f-1) at the bottom row of I(n) and 
obtain 

r Ci.N+l(n) 

I 

sb.N+l(n) 

In-2 I(n) = J(n) 

-sb,N+l(n) ck.N+l(n) 1 (17) 
As a result of this transformation, only the first row and 
the bottom row of matrix I(n) would change and they 

become[Fk?t(n,n-f-l) 07 pl;'.f+l(n) o& X] and 

[o OT et,,f+t(n-f-l) 0: X] respectively, where x denotes 
an element whose value is not of direct intcrcst to us. This 
transformation defines the following intermediate forward 
cosine and sine parameters: 

c’F N+,(n) = 11”*FrC~(n-l ,n-f-2) 

FAyr(n,n-f-l) (18) 
si,N+,(n) = ch+l(n,n-f-1) 

F[j:+2l (n,n-f- 1) 
where 

FN+r(n,n-f-l) = hFN+r(n-l,n-f-2) + (&+r(n,n-f-l))2 

(19) 

(20) 
and 

is the time updated recursion for the minimum weighted 



sum of the intermediate forward prediction error square. 

Again by using (17), the order-update recursion for the 
interpolation error as one additional future data sample is 
used can then be obtained by 

dr.f+r(n-f-1) = 

cb,N+l(n)dp,dn-f- 1) - h”*s.F,N+l(n)PF,,f+l(n-1) (21) 
and the time update for computing its interpolation 
auxiliary parameter is 

&.f+l(n) = h’“ckN+l(n)pF,,f+l(n-1) + SF.N+l(n>eb,An-f-l)(22) 

The order-update recursion for the interpolation error as 

one additional past data sample is used can be similarly 
obtained. We summarize the final results without deriving 

them: 

&p+l.t(n-f) = dB.N+l(n)~,r(n-f) - h”*sB.N+l(n)pBp+l.r(n-1)(23) 

pF++l.r(n) = h’“C.B,N+l(n>~~l,An-l) + ~B,N+l(n)&dn-f) (24) 

where 

c’ri.N+,(n) = h”*E&?dn-l,n-f-1) 

B$:i(n,n-f) (25) 

s;.N+l(n) = ;;,;;; 

(26) 
which defines the intermediate backward cosine and sine 

parameters by using 

BN+l(n,n-f) = hBN+t(n-l,n-f-l) + (&+r(n,n-f))* (27) 
Equations (10) - ( l6), and (18) - (27) constitute the 

QRD-LSL interpolation algorithm. To initialize the 

algorithm, at time n=O we set AZ(O) = A:(O) = 0 for all m 

and &f(O) = &r(O) = 0 for all p and f. Note that the total 

number of computations needed for the computation of a 
(p,f)th order interpolation error is proportional to O(N) 

including the computation of the prediction errors, where 
p+f = N. This is in contrast to the O(N2) computations 
needed by the algorithms developed in [41[5]. 

4. COMPUTER SIMULATIONS 
In this section we describe a computer simulation 

experiment which compares the performances of the QRD- 
LSL prediction and QRD-LSL interpolation using the 
QRD-LSL interpolaticn algorithm. For purposes of 
comparison, we use an AR(2) data process defined as y(n) 

+ a t y(n-1) + a2 y(n-2) = E(n), where the driving process, 

E(n), is a computer generated sequence which simulates a 
zero-mean Gaussian white noise process with variance 02. 
The symbol < > is used to denote a 200 sample ensemble 
average. For convenience, the AR parameter values are 
from [3, p.3511. The results of the simulations are 
presented in Figure I corresponding to an eigenvalue 
spread of 100 using a logtu scale. In this figure, the 

ensemble-averaged squared errors for e3(n) and e&n) for 

0 I n I IS I and e$,z(n-2) for 2 5 n I 153 were computed 

over 200 trials each. Each trial used an independent 
realization of the white-noise process E(n). Figure I clearly 

shows that interpolation yields smaller steady-state values 
of the average squared error (about 7 dB) than prediction 
does. 

5. CONCLUSIONS 
This paper shows that the QRD-LSL algorithm that 

combines the good numerical properties of QR- 
decomposition and the desirable features of a lattice 
structure can be extended from linear prediction to linear 
interpolation. The simulation results reveal that the QRD- 

LSL interpolation, which makes better use of the 
correlation between the nearest neighboring data samples 
than the QRD-LSL prediction, may achieve much better 
performance than that of the QRD-LSL prediction. 

REFERENCES 
[l] P. A. Regalia, M. G. Bellanger, “On the Duality 

Between Fast QR Methods and Lattice Methods in Least 
Squares Adaptive Filtering,” IEEE Trans. on Signal 
Processing, Vol 39, No.4, April 1991, pp.879-891. 

[2] I. K. Proudler,-J. G. McWhirter and T. J. Shepherd, 
“Computationally efficient QR decomposition approach to 
least squares adaptive filtering,” IEE Proceedings-F, Vol. 
138, No. 4, August 1991. 
[3] S. Haykin, “Adaptive Filter Theory,” Englewood 
Cliffs, New Jersey: Prentice-Hall Inc., 1996, 3rd ed. 

[4] C. K. Coursey, and J. A. Stuller, “Interpolation Lattice 
Filter,” IEEE Trans. on Acoustics, Speech, and Signal 
Processing, Vol. ASSP-39, No. 4, pp. 965-967, April 
1991. 
[5] J. T. Yuan, “Asymmetric Interpolation Lattice,” IEEE 
Trans. on Signal Processing, Vol 44, No.5, May 1996, 

pp.1256-1261. 
[6] Peter Strobach, “Linear Prediction Theory - A 
Mathematical Basis for Adaptive Systems,” Springer - 
Verlag, 1990. 
[7] J. T. Yuan, “QRD-Based LSL Interpolators - Part I: 
An Exact Decoupling Property of the LSL Interpolator,” 
Proceedings of IEEE 1998 International Conference on 
Acoustics, Speech and Signal Processing (ICASSP-98). 


