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function scale factor. This second phase adaptation scheme is 

shown in Fig. 2. 
ABSTRACT 

This paper analyzes the statistical behavior of a sequential 
gradient search adaptive algorithm for identifying an 
unknown nonlinear system comprised of a discrete-time 
linear system H followed by a zero-memory nonlinearity g(.). 
The LMS algorithm tirst estimates H. The weights are then 
frozen. Recursions are derived for the mean and fluctuation 
behavior of LMS which agree with Monte Carlo simulations. 
When the nonlinearity is modelled by a scaled error function, 
the second part of the gradient scheme is shown to correctly 
learn the scale factor and the error function scale factor. 

Mean recursions for the scale factors show good agreement 
with Monte Carlo simulations. 

1. INTRODUCTION 
Gradient search algorithms (i.e. the LMS algorithm and its 

variants) are often used for the identification of unknown 
systems. l!sually, the unknown system is linear with 
memory and the algorithm inputs are noise-comtpted samples 
of the unknown system output and noise-free samples of the 
unknown system input. Many researchers have studied the 
statistical behavior of such systems [1,2]. Relativelv little 
analysis has been done when the system to he identified is 
nonlinear with memory. Much of this analysis is related to 
nonlinear system identilication using neural networks [3-51. 

This paper investigates the statistical behavior of a 
sequential gradient search adaptive algorithm for identifying 
an unknown nonlinear system comprised of a discrete-time 
linear system H followed by a zeromemory nonlinearity g(.). 
Furthermore, both the input and output of the unknown 
system are corrupted by additive independent noises. 
Gaussian models are used for all inputs. Fig. 1 shows the 
specific nonlinear system identification problem. The input 
to the unknown system is comprised of the sum of two zero 
mean independent gaussian white sequences x(n) and nr(n) 

2 2 
with variances 0, and OI , respectively. The unknown 

system output is obscured by a third independent zero-mean 

gaussian sequence no(n) with variance 0:. The nonlinearity 

g(.) is due to inherent system nonlineatities such as the 
sigmoidal threshold function in neural networks or amplifier 
saturation in satellite communication networks, to name a 
few. 

Recursions are derived for the mean and fluctuation 
behavior for linear adaptation (LMS) and for the mean for the 
nonlinear adaptation. Since the filter structure of LMS is 
linear, LMS is not able to identify the nonlinear portion of 
the unknown system. Surprisingly, LMS identifies a scaled 
linear part of the unknown system The scaling depends upon 
the unknown nonlinearity and the number of training 

samples. The weights are then frozen at the end of the lirst 
adaptation phase. If the nonlinearity is modelled by a scaled 
error function , the second part of the sequential identification 
scheme identifies the first phase scale factor and the error 

2. ANALYSIS - LINEAR ADAPTATION 
2.1 LMS Algorithm 

The weight recursion for the LMS weight vector is given 

by Il.21 

W(n+l)= H’(n)+ pe(n)Y’(n) (1) 

whete Y(n) =X(n) + NI(n), XT(n) = [x(n), x(n-l).... x(n- 

N+l)], NIT(n) = [nI(n), nI(n-l).... nI(n-N+l)], S = number 

of adaptive filter taps and 

e(n) - JHTX(n)]+ n,(n)- \V(n,TY(n) (2) 

2.2 Mean Behavior of (I) 
averaging both sides of (1) and using the standard LMS 

assumption that the weights at time n are statistically 
independent of the inputs at time n yields 

E[VV(n + I)]- [I - ;Rw ]dVV(n-)]+ pE{g[lITX(n)]Y(n)} 

(3) 

where RY, - aY(n)Y 
T 2 2 

(n)] - (ux + oI )I The second 

expectation can be evaluated using Bussgang’s Thm. [6], 
yielding a mean weight recuwion whose solution is given by 

E[VV(n)] = [I.- uR\pi ]‘~w(o)] + 

pE{g[HTX(n)l>n$[I -pRYY ]“-l-P~?s~ (‘) 

where RXy - QX(n)XT(n)] = aZ1. 

solution to (4) is 

The steady-state 

lim,,, IjW(n)] - f$ E{g[HTWnJl H. (5) 
X 

Thus, the mean weights of the LMS algorithm converge to a 
scaled version of the linear portion of the unknown channel. 

2.3 Wiener MSE 
The optimum Wiener filter for this problem satisfies the 

orthogonality condition E[e( n)Y( n)] = 9 with 

w (-) -& E{g’[HTS(n)]} H (6) 
X 

Comparing (5) and (6), the LMS algorithm converges to the 

Wiener filter on average. The Wiener MSE &., is 

4 
co = u; + (7) 

wherer=HTX(n). 



2.1 Misadjustment Error 
.L\n exact recursion is derived for the fluctuation behav-ior of 

the weights which can be used to evaluate the increase in USE 

due to the adaptation. Let V(n) = LV(n) - LVO. Then (1) can 

be written as 

V(ntl) - 
C 

I -pl.(n\l’(n) T 1 V(n) t uew(n)J*(n) (8) 
where elV(n) = ~HTX(n)]tno(n) -WAY(n) is the 

\Viener filter error Averaging (8) and noting that E\.E’ (n) is 

orthogonal to the data vector Y(n), yields 

E[V(n)l - 
[ 

1- u(o2 to;, 1 %(O) (9) 

Post-multplying (8) by its transpose and averaging yields a 
recumion for the covanance matrix of V(n), KVV(II), 

Kvv(n t 1) = K.,.(n)- pRy,KVV(n) -pK,(n)R,, 

tp. e,(n)Y(n)VT(n) 
i 1 

1 -pY(n)Y(n) 
T II 
T T 

tp II (10) 

2 
+u l.(n)Y(n)TK,(n)I.(n)Y(n)T 1 2 2 
+v i Ed, (n)Y(n)Y(n)T 1 
ew( n) is non-Gaussian because g(.) is nonlinear. The 

orthogonality of E~( n) and Y(n) is not sufficient for 

independence. Hence, the expectations involving em-(n) in 

(IO) are new and must be evaluated. Let 

:\ = E[z3g(z)]Var3(z) - 3E[zg(z)].Var2(z), 

B = {E[z2g2(z)Wartz) - E[g2(z)} Vat-(z) and C=oz t a;. 

Near convergence, (IO) becomes [7] 

K\,,(n)+ p2C2tr[K,.(n)] 

Taking the tmce of (1 

B-2E2[g*(z)I- 1 

4 
1 

2F4g’(z)l % HTH 
c 1 

, solving the recursion ar 

1 
4 (1 1) 

1 
id assuming 

the additional components of the trace due to the nonlinearity 
g(z) are negligible yields the result for the linear case, 

lim 
P&J 

n-e% t{KV\‘(n)] * 

( 
?-(N+2)p(c$ to;, 

1 

(12) 

However, in (12) , to is bounded away from the noise floor 

because of the nonlinearity. Hence, the weight 

fluctuations are larger than when identifying a linear system 

Kil;(n) = g\I(n)]EjV(n)] 
‘1‘ 

for small n. For large n. Ihe 

kfSE is dominated by the mis-match terms. Then, 

E[e2(n)] - oz t I{g’[HT\;(n)]]- 

(oz tcr~~\V~\VG - EIV(n)jTE[\.(n)l] 
d 

(13) 

I.‘sing (9) in (13) for n-(O) = 0 I yields 

(11) 
Hence for pmctical purposes, when g(z) is nonlinear, the 
fluctuation effects of W(n) upon the MSE is negligible. - . 

Thus, \V( n) s a( n)H where 

a(n) - &E{g’bTX(n)]} x 

X 

[l-{l-p(ol;to~)}n] 

(15) 

and holds for sufficiently small u. After n iterations, \V(n) in 

Fig. 1 will be replaced by a( n)H, a deterministic scaled 

version of the linear portion of the unknown channel. The 
adaptive filter weights are now frozen in time. 

3. ANALYSIS - NONLINEAR ADAPTATION 

3.1 Nonlinear Adaptation Algorithm 
Consider the model in Fig. 2 for learning the nonlinear 

portion of the channel g(z), af is the scale factor in (15) after 

the weights am frozen. Since g(z) is unknown, af is an 

unknown parameter. The factor k is selected so that the 

nonlinearity input and output powers arc independent of o. 

Thus, (SSR ). 
2 T 

- a,H 
2. 

H ,’ 00 IS fixed as u varies. Since 2 
E z (n) -u$ITH, [ 1 2 T 

k2 =u,H H; (16) 

The factor k is also unknown since g(z) is unknown. 
However, the shape of g(z) is assumed known. Thus, a zero 
memory nonlinear system ID problem has been defined. It 

consists of adapting bI and b2 to the two unknown 

parameters afand k. b,(n) and b?(n) will be adapted using a 

gradient descent algorithm. 

The enor is given by 

e(n) = kg(r) t n?(n) - b2(n) bl(n)afHT1.(n) 1 (17) 

The MSE is 
2 

E[e (n)] = ui+ui t 

bi(n)$g2{afbI(n)(r+HTnI(n))}] (18) 

-2b2(n)k 

The stochastic gradient search algorithm for bI (n). b2(n) is 

with memory. Since go is bounded away from of, and 

K&n) is of order p for large n, one can write 



bl(n + 1) - bl (n) +ue(n)b2(n)afHTY(n) 

x 1 
b?(nt 1) - b2(n) t p e(n) afbl(n)HTY(n) 1 

(19) 

3.2 Specification of Nonlinearity 
In order to proceed further with the analysis, g(z) must be 

chosen, 
z 

g( 2) - Jexp(- u2 
2 

2u )du (20) 
0 

This function is a reasonable model for saturation type 
nonlinearities. A scaled version has been successfully used 
for modelling saturation type nonlinearities in such 
applications as the threshold function in neural networks [3] 
and limiters in satellite amplifiers [5]. By varying the 

parameter u, g(z) can range from a linear device (u + 03 ) 

to a scaled hard limiter sgn(z) (a + 0 ). 
3.3 MSE Surface 

Let a-u2tuzHTH. b-(u; tu;)HTH 

c - u2 t a fbfb. Using (20) in (19) yields, 

E[e 
2 

(n)] - o. tu2 t b?(n)u2sin-1’ “b’(n)b ’ 
2 

x 1 

L 
22 

afbl(n)b +a3 I 

-2b?(n)ku sin 
-1 1 afbl(n )uzHTH 1 

I G I 

(21) 

The MSE surface ha: a global minimu; [7). 

3.4 Transient Mean Weight Behavior 
Eq. (21) can be used to find recursions for the transient 

mean behavior of (19). For small p, the fluctuations of bl(n) 

and b?_(n) about their respective means can be neglected. 

Thus, using the partial derivatives of the MSE surface (18) and 
averaging (19) yields 

bl(n t 1) - bl (n) t p 
afu' b2(n) 

7 

1 

X 

a2 t a:il(n)b 

(22) 

2 -Irayblfnb~HTH1 
b2(ntl)-b2(n)tpu ksm 

1 G ] 

r 
2 

a:il(n)b 1 
(23) 

u2b2(n)sin 

-1 

- p 
2-2 2 

af bl (n)b+ u 1 

where b,(n) - 4bl(n)], b2(n) - E[b2(n)] and C - E[c]. 

4. COMPARISON OF MONTE CARLO 
SIMULATIONS AND THEORY 

A number of assumptions were made in Section 2. These led 
to the conclusion that the linear adaptive filter can identify 
the linear portion of the unknown channnel to within a scale 
factor. Monte Carlo simulations (100 runs) have been 

performed to verify this. The filter H was a normalized time- 
delayed raised-cosine with 13 taps. The other parameters were 

p =.OOl. u. = 0.1 , ox = 1, q = 1, and u = 1. Fig. 3 

compares the time averaged (uniform a,eighting of 10 
adjacent sample points) simulated \lSE with the \lSE 
predicted by (15). Fig. 4 shows the mean behavior of the 
weights as predicted by (4). Fig. 5 shows the Monte Carlo 
simulations. Comparison of the MC simulations and theory 
show excellent agreement. Fig. 6 shows the weights after 
1000 iterations. 

Monte Carlo simulations (10 runs) of (19) and the 
theoretical behavior predicted by (22) and (23) have shown 

excellent agreement [7] for bl(0) = b2(0) = 1, p =.Ol, a0 =.l 

9 ox=l,q=sqtt(.l) and u= l.sqrt(.l),sqrt(lO). 

5. RESULTS AND CONCLUSIONS 

This paper has investigated the statistical behavior of a 
gmdient adaptive scheme for identifying an unknown 
parameterized nonlinear system (i.e. the shape of the 
nonlinearity is assumed known) with memop. Neu 

recursions were derived for the mean and fluctuation behavior 
of the LMS algorithm and for the mean behavior of the 
nonlinear gradient algorithm. The deterministic recursions 
accurately predicted the behavior of Monte Carlo simulations. 
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Fig. 1 - Nonlinear System Identification with a 
Linear Adaptive Filter. 
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Fig. 3 - Smoothed MSE vs. Iterations for 
f.k =.OOl, “o = 0.1 , ux = 1, q=l, u = 1. 
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Fig. 2 - Sonlinear System Identification with a 
frozen linear filter and adaptive scaling 
for the nonlinearitv. 

g 0.14 
5 
0 
2 0.12 

i 

g 0.1 
c 
3 
0 o.ce 
5 

Pm 
$0.04 

P I 
2ccl 400 600 a00 loo0 

tteratlons 

Fig. 4 - Mean Weight vs. Iterations for 
p=.OO1,ao=0.1.a,=1, q=l, u=l. 
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Fig. 5 - -4verage Weight (100 MC) vs. Iterations 
for p =.OO 1, (30 = 0.1 , ux = 1, UI =l, u =l. 

Fig. 6 - Ep( lOOO)] and W( 1000) for 100 MC Sm. 


