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ABSTRACT

This paper analyzes the statistical behavior of a sequential
gradient search adaptive algorithm for identifying an
unknown nonlinear system comprised of a discrete-time
linear system H followed by a zero-memory nonlinearity g(.).
The LMS algorithm first estimates H. The weights are then
frozen. Recursions are derived for the mean and fluctuation
behavior of LMS which agree with Monte Carlo simulations.
When the nonlinearity is modelled by a scaled error function,
the second part of the gradient scheme is shown to correctly
learn the scale factor and the error function scale factor.
Mean recursions for the scale factors show good agreement
with Monte Carlo simulations.

1. INTRODUCTION

Gradient search algonithms (i.e. the LMS algorithm and its
variants) are often used for the identification of unknown
systems.  Usually, the unknown system is linear with
memory and the algorithm inputs are noise-corrupted samples
of the unknown system output and noise-free samples of the
unknown system input. Many researchers have studied the
statistical behavior of such systems [1,2]. Relatively little
analysis has been done when the system to be identified is
nonlinear with memory. Much of this analysis is related to
nonlinear system identification using neural networks [3-5].

This paper investigates the statistical behavior of a
sequential gradient search adaptive algorithm for identifying
an unknown nonlinear system comprised of a discrete-time
linear system H followed by a zero-memory nonlinearity g(.).
Furthermore, both the input and output of the unknown
system are corrupted by additive independent noises.
Gaussian models are used for all inputs. Fig. 1 shows the
specific nonlinear system identification problem. The input
to the unknown system is comprnised of the sum of two zero-
mean independent gaussian white sequences x(n) and ny(n)

. . 2 2 .
with variances Oy and Oy, respectively. The unknown
system output is obscured by a third independent zero-mean

”
gaussian sequence no(n) with variance G,. The nonlinearity

g(.) 1s due to inherent system nonlinearities such as the
sigmoidal threshold function in neural networks or amplifier
saturation in satellite communication networks, to name a
few.

Recursions are derived for the mean and fluctuation
behavior for linear adaptation (LMS) and for the mean for the
nonlinear adaptation. Since the filter structure of LMS is
linear, LMS is not able to identify the nonlinear portion of
the unknown system. Surprisingly, LMS identifies a scaled
linear part of the unknown system . The scaling depends upon
the unknown nonlinearity and the number of training
samples. The weights are then frozen at the end of the first
adaptation phase. If the nonlinearity is modelled by a scaled
error function , the second part of the sequential identification
scheme identifies the first phase scale factor and the error

function scale factor. This second phase adaptation scheme is
shown in Fig. 2.

2. ANALYSIS - LINEAR ADAPTATION
2.1 LMS Algorithm

The weight recursion for the LMS weight vector is given
by [1.2]

W(n+1) = W(n)+ue(nY(n) (1)

where Y(n)=X(n)+ Nj(n), XT(n) = [x(n), xX(n-1).... X(n-
N+1)]. NIT(n) =[n(n), ni(n-1)....  n(n-N+1)], N = number
of adaptive filter taps and

e(n) = g[HTX(n)]+ ng(n)- W(n)TY(n) 2)

2.2 Mean Behavior of (1)

Averaging both sides of (1) and using the standard L.MS
assumption that the weights at time n are statistically
independent of the inputs at time n yields

E[W+p]=[1- Ry HWm)]+ p.E{g[I{TX(n)]Y(n)}
3)

T 2 2
w " EHY(n)Y (n)}= (o +0 )I. The second

expectation can be evaluated using Bussgang's Thm. [6],
yielding a mean weight recursion whose solution is given by

Elwm] = [1-uryy JHw]+

n-1 n_l_p 4)
uE{g‘[HTX(n)B };0[1 ~uRy |  RxxH
p-

where R

where R.\"(

solution to (4) is

T 2
= FX(n)X (n)] = oxl. The steady-state

limgp o HW(m] = =2 E{ H ‘((n):ﬂ (5)
o; + o}

Thus, the mean weights of the LMS algorithm converge to a
scaled version of the linear portion of the unknown channel.

2.3 Wiener MSE
The optimum Wiener filter for this problem satisfies the

orthogonality condition E[e(n)Y( n)] = (0 with

2
o T
Wo =i E{g’[H xm)]} H (®)
0 + O}

Comparing (5) and (6), the LMS algorithm converges to the
Wiener filter on average. The Wiener MSE & is

4
2 2 o 2 T
Eo = 00+l{g (r)]——z-x—-,—E {g’(r)}H H @)
oy +071

where r =HT X(n).



2.4 Misadjustment Error

An exact recursion is derived for the fluctuation behavior of
the weights which can be used to evaluate the increase in MSE
due to the adaptation. Let V(n) = W(n) - WO. Then (1) can
be wntten as

T
Vin+l) = [I -uY(nY{n) ]V(")+ uey (MY (n) (8)

T T .
where ey (n) = g[H X(n)]+n0(n) —WoY(n) is the
Wiener filter error . Averaging (8) and noting that e (n) is
orthogonal to the data vector Y (n), yields
2 27"
E[V(n)] =[l- u(og + Of )] V(0) 9)

Post-multplying (8) by its transpose and averaging yields a
recursion for the covanance matrix of V(n), Kyy(n),

Kyy(n+ 1) =Ky (n)- MR vy Kyy (M) - uK (R yy

T T
+uE{sw(n)Y(n)V (n){l—uY(n)Y(n) }]

T T\
+p.l{s“.(n)\'(n)\/ (n){l—p.Y(n)Y(n) }] (10)

2 T T
+u E{Y(n)Y(n) Ky (MY (n)Y(n) ]

242 . e T
+ l:{sw(n)\(n)\'(n) ]

gy (n) is non-Gaussian because g(.} is nonlincar. The
orthogonality of &g (n) and Y(n) is not sufficient for

independence. Hence, the expectations involving &y (n) in
(10) are new and must be evaluated. Let
A=E[Bg@)Vari(2) - 3E[zg(@)) Var3(z),

nd “
B = {Elg2(2)Van(z) - Elg(2)} - Var(z) and C=0j +0].
Near convergence, (10) becomes {7]

2.0 2.0
Kyy(n+l) = (1 -2uC+2u°C” )va(n) + 1 CTK (+ (m)]

[B-ZEzlg'(z)]— l
snJCeol +ogHH' | o LL oy
2H g @)]-2A H H
l l c /]

Taking the trace of (11), solving the recursion and assuming
the additional components of the trace due to the nonlineanty
g(z) are negligible yields the result for the linear case,

uNE,

limy oo t] Kyy (m] = ( (12)

2 2
2-(N+2)woy +oi’))

However, in (12), &, is bounded away from the noise floor

2 o .
o, because of the nonlinearity. Hence, the weight

fluctuations are larger than when identifying a linear system
. . . 2
with memory. Since &, is bounded away from o, and

Kyy(n) is of order g for large n, one can write

Kyy(n) = E[lVim]E V(n )]] for small n. For large n, the
MSE is dominated by the mis-match terms. Then,

2 2 2T
E[e (n)]- oo+l{g [H X(n)]]—

2 2Y Ty R T s
(ox +o] fWoWe - E[Vm] E[V( n)l]
Using (9) in (13) for W(0) = 0, yields

7 ) 2 7
E[e'(n)] =0g + E{g'(r)] —C(] - {1 - p.("}'n )\\‘g\\’()
(14)
Hence for practical purposes, when g(z) i1s nonlinear, the
fluctuation effects of W(n) upon the MSE is negligible.
Thus, W(n) = a(n)H where

(13)

-

5 .
aln) -,—“,E{g'[HIX(n)]}x
oy o]

[l - {l - p(og + 0%)}n]

and holds for sufficiently small p. After n iterations, W(n) in
Fig. 1 will be replaced by a(n)H, a deterministic scaled

version of the linear portion of the unknown channel. The
adaptive filter weights are now frozen in time.

3. ANALYSIS - NONLINEAR ADAPTATION

3.1 Nonlinear Adaptation Algorithm
Consider the model in Fig. 2 for leaming the nonlinear

portion of the channel g(z). af is the scale factor in (15) after
the weights are frozen. Since g(z) is unknown, af is an
unknown parameter. The factor k is selected so that the
nonlinearity input and output powers arc independent of o.

2 T 2. . .
Thus, (SNR)g = o,H Hiog is fixed as o vanes. Since

2 2. T 2 2. T 2
E[z (n)]-= ogH H, k" =ogH H I{g (z)] (16)
The factor k is also unknown since g(z) is unknown.
However, the shape of g(z) is assumed known. Thus, a zero

memory nonlinear system ID problem has been defined. It
consists of adapting b} and ba to the two unknown

parameters af and k. bj(n) and ba(n) will be adapted using a
gradient descent algorithm.
The error is given by

T
e(n) = kgr) + na(n) - b2(n)4:b](n)ufH Y(ﬂ)] an
The MSE is

2 2 2
Ele (n)] = 0, +0x +

2 2 T

ba(mHg {afbl(n)(r+H nI(n))} . (18)
T

—2b2(n)kF{g(r)g{afb1(n)(r+H nI(n))}]

The stochastic gradient search algorithm for by (n), ba(n} 1s



by(n +1) = by (n) +ue(n)b2(n)afHTY(n)
T,
x glbj(magH Y(n) (19)
T,
ba(n+ 1) = by(n) +u e(n) g[afbl(n)H Y (n)]

3.2  Specification of Nonlinearity

In order to proceed further with the analysis, g(z) must be
chosen,
0
)
This function is a reasonable model for saturation type
nonlineanties. A scaled version has been successfully used
for modelling saturation type nonlinearities in such
applications as the threshold function in neural networks [3]
and limiters in satellite amplifiers [5]. By varying the
parameter o, g(z) can range from a linear device (G — )
to a scaled hard limiter sgn(z) (o — 0).
3.3 MSE Surface

2 2T 2 2T
Let a=c +0,H H, b=(o, +o)H H and
2 22
cC=g -H’ll‘blh Using (20) in (19) vields,
o2 2. 2.2 -l afbl(mb ]
Ele“(n)] = o5 +o% + bz("l)ﬁ sin |\~

l_“fbl(")b +o0” J

2T

_ilafbymozH H ]

—2b2(n)k02 sin l{—”—‘f_x—l (2))
oac

The MSE surface has a global minimum [7).
3.4 Transient Mean Weight Behavior

Eq. (21) can be used to find recursions for the transient
mean behavior of (19). For small p, the fluctuations of by(n)
and ba(n) about their respective means can be neglected.
Thus, using the partial denvatives of the MSE surface (18) and
averaging (19) yields
- - o 04 ba (n)
bi(n +1) = bl(n) +u7 p Yo b

ko + af b} (n)b)

| |
2. T
; k oxHi H

El(n)t-)g (n)osb

{ 2 2
- s 2T =2 Y
| ‘Lc- (af b1 (n)oxH H) J(_:2 ‘("‘12 b1(n)b)

——

~

2. _1faf E](n)oiHTH-'

gz(n+l) - E\g(n)w,-.c ksin
=
l' 5 <=2 'l (23)
- af by (nyb
~u o2 b2(n)sin 1| 2_2 1 7|
chfbl(“l)b+6 1
where bl(n)-E{bl(n)] b2(n) = E[by(m] and & = Efe]

4. COMPARISON OF MONTE CARLO
SIMULATIONS AND THEORY

A number of assumptions were made in Section 2. These led
to the conclusion that the linear adaptive filter can identify
the iinear portion of the unknown channnei to within a scale
factor. Monte Carlo simulations (100 runs) have been
performed to verify this. The filter H was a normalized time-
delayed raised-cosine with 13 taps. The other parameters were
p =001, 05=01, ox=1, of =1, and o =1 Fig 3
compares the time averaged (uniform weighting of 10
adjacent sample points) simulated MSE with the MSE
predicted by (15). Fig. 4 shows the mean behavior of the
weights as predicted by (4). Fig. 5 shows the Monte Carlo
simulations. Comparison of the MC simulations and theory

a t t oy £ ahawe tha ....-...
show excellent agreement. Fig. 6 shows the weig

1000 iterations.
Monte Carlo simulations (10 runs) of (19) and the
theoretical behavior predicted by (22) and (23) have shown

excellent agreement [7] for bj(0) =b2(0) =1, =01, op =.1
,O0x =1, 01=sqrt(.1) and o = 1, sqrt(.1), sqrt (10).

5. RESULTS AND CONCLUSIONS

This paper has investigated the statistical behavior of a
gradient adaptive scheme for identifying an unknown
parameterized nonlinear system (i.e. the shape of the
nonlinearity is assumed known) with memory. New
recursions were derived for the mean and fluctuation behavior
of the LMS algorithm and for the mean behavior of the

noanhinaar oradient aloagrithm The dsterminigtic racursions
NoMiNcar gradicniy a:gonuim. ac GOLMMinsuc reCursions

accurately predicted the behavior of Monte Carlo simulations.
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Fig. 1 - Nonlinear System Identification with a
Linear Adaptive Filter.
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Fig. 3 - Smoothed MSE vs. Iterations for
u =001, Og = 0.1 ,Ox = 1, 01:1, g=1.
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Fig. 5 - Average Weight (100 MC) vs. Iterations
foru =001, 05=0.1,05x=1, o;=1, og=1.
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Fig. 2 - Nonlinear System Identification with a
frozen linear filter and adaptive scaling
for the nonlinearitv.
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Fig. 4 - Mean Weight vs. Iterations for
u=001,0=01,0x=1, o=1, o=1.
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Fig. 6 - E[W(1000)] and W(1000) for 100 MC Sim.
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