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ABSTRACT

Transform/subband representations form an important element of
many signal processing algorithms and applications. Until recently,
representations have typically been designed for signals with con-
venient supports, e.g. 2-D signals with rectangular supports. How-
ever, a number of applications require representations for signals
with arbitrary (non-rectangular) regions of support. We present a
novel algorithm for creating critically sampled perfect reconstruc-
tion wavelet representations for signals defined over arbitrary sup-
ports. The proposed algorithm selects a subset of vectors from a
convenient superset basis which under appropriate conditions pro-
vides a basis over the given arbitrary support. The algorithm can
be interpreted as solving a corresponding sampling problem.

1. INTRODUCTION

Many applications involve multidimensional (M -D) signals defined
over arbitrary regions of support. Examples include object/region-
based representations for image and video, medical imaging, and
the numerical solution of partial differential equations over arbi-
trary domains. In these applications, it is often useful to have trans-
form/subband representations for signals with arbitrary supports.

In this paper we present a novel approach for creating critically
sampled perfect reconstruction wavelet representations for discrete
1-D, 2-D, and general M -D signals defined over arbitrary regions
of support (A-ROS). Specifically, we assume the A-ROS is given,
and the goal is to represent the signal’s amplitude over the A-ROS.
This paper begins with a brief overview of previous research in this
general area. We then review our general proposed approach [1]
and present some interesting interpretations. We then present our
wavelet-based approach and discuss some of its properties.

2. PREVIOUS RESEARCH

The previous research was primarily motivated by the problem of
representing (transforming) signals defined over a single, contigu-
ous, arbitrarily shaped support, such as an object in an image. The
previous research can be roughly grouped into three classes. The
first class of approaches embeds the signal in a superset space over
which a transform can be conveniently defined/computed, e.g. a 2-
D A-ROS signal can be embedded in a circumscribing square over
which a DCT can be computed. A variety of different approaches
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based on this theme have been investigated [2, 3]. A common fea-
ture of these approaches is that they are overcomplete (oversam-
pled) since there are more coefficients in the transform over the
square than there are samples in the signal’s ROS.

The second class of approaches constructs a basis over the A-
ROS, for example via Gram-Schmidt [4, 5] or the KLT. This class
of approaches may achieve the highest performance, since they at-
tempt to construct a basis that is in some sense optimal. However,
the complexity of the construction appears to limit their practical
applications. The lifting scheme [6] does not explicitly construct
a basis, but instead performs (invertible) local operations that en-
sure critical sampling and perfect reconstruction. Lifting as well as
the sophisticated approach presented in [7] may potentially be very
useful for applications that demand very high quality processing.

The third class of approaches apply 1-D transforms along each
of the dimensions, e.g. a 2-D A-ROS signal can be processed by
applying invertible 1-D transforms first along each of the rows and
subsequently along each of the columns [8, 9]. Although these ap-
proaches are appealing in that they require only 1-D transforms, the
fact that they are nonseparable may complicate their interpretation
and subsequent processing.

3. PROPOSED GENERAL APPROACH

In this section we present a general approach that provides a num-
ber of desirable properties. The representation is based on known,
separable transforms as defined over convenient supports, and also
provides critical sampling and perfect reconstruction as follows from
a basis defined over the A-ROS.

The approach can be achieved in the following manner [1, 10].
For purposes of illustration, and without loss of generality, consider
a 2-D signal with an arbitrary (bounded) support. Embed the A-
ROS signal in a superset space (support) over which a transform
may be conveniently defined, e.g. the entire 2-D plane or a circum-
scribing square. For simplicity, consider a transform over a circum-
scribing square as illustrated in Figure 1. The transform over the
square provides a basis over the square. The set of vectors in the
basis over the square spans not only the signal space defined by
the square, but also the signal space defined by the arbitrary sup-
port. We select an appropriate subset of the vectors defined over
the square, such that they are linearly independent over the arbi-
trary support and thereby provide a basis over the arbitrary support.

Examining the Proposed General Approach: The proposed
approach provides a significant amount of flexibility. For instance,
it can in principle be applied using any superset transform/subband
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Figure 1: Example of general proposed approach: The given 2-
D A-ROS signal whose support is shown in gray and contains M
samples is embedded in an N -sample circumscribing square over
which a transform (basis) is defined. We selectM out of theN vec-
tors from the superset basis such that they are linearly independent
over the A-ROS and thereby provide a basis over the A-ROS.

representation, e.g. DFT, DCT, wavelet. In addition, given any su-
perset basis, typically there are many subsets ofM out ofN vectors
that provide a basis over the given A-ROS, where some of these
bases may be in some sense better than the others. Furthermore, the
selected basis may be used for either “analyzing” or “synthesizing”
the signal—we create a biorthogonal representation and explicitly
choose either the analysis or the synthesis basis. We next briefly
consider these two possibilities as they provide different insights
and may be useful for different applications.

Selecting a basis to analyze the signal (analysis basis) is equiv-
alent to the following sampling problem. Begin by extrapolating
the A-ROS signal to fill the circumscribing square, for instance by
zero padding, and then compute a transform over the square, as
shown in Figure 2. Since the square contains N samples, the trans-
form over the square produces N coefficients. Selecting a basis
to analyze the signal is equivalent to selecting (sampling) M out
of the N coefficients such that with only those M coefficients the
original signal can be perfectly recovered.

M−sample signal
             in
N−sample square

N Coefficients

Select / sample
 M out of the N
   coefficients

Transform
     over
   square

Figure 2: Selecting a basis to analyze the A-ROS signal.

Selecting a basis to synthesize the signal (synthesis basis) is
equivalent to determining which M out of N coefficients in the
square one needs (the remaining (N �M) coefficients are zero)
such that computing an inverse transform over the square recovers
the original signal, as shown in Figure 3. The inverse transform
produces the A-ROS signal with some extrapolation, but the sig-
nal can simply be picked out since its support is known.

Determining for any arbitrary support a subset of M coeffi-
cients (vectors) that enables perfect reconstruction is in general a
very difficult problem. While the linear independence of various
subsets of M vectors can be explicitly examined (e.g. by Gram-
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Figure 3: Selecting a basis to synthesize the A-ROS signal.

Schmidt), this is very computationally complex. In Section 4.1 we
present a simple algorithm that selects an appropriate subset of vec-
tors to provide a basis (solves the sampling problem) for any arbi-
trary support.

4. WAVELET-BASED REPRESENTATIONS

In this section we present a critically sampled wavelet representa-
tion which is an extension of our previous work [1]. We focus on a
wavelet-based representation because wavelets are useful in many
applications, and also because they lead to a particularly simple and
appealing solution. We consider the case of a 2-channel filterbank
in 1-D or a 2�2 channel filterbank in 2-D, since once we can solve
the problem of determining a basis over any arbitrary support for
these filterbanks, the solution can be recursively applied to any of
the subbands to create wavelet- or wavelet-packet-based represen-
tations.

In [1] it was shown that the important polynomial accuracy prop-
erty (provided by conventional wavelet transforms of signals with
convenient supports) can be preserved within the context of our
simple approach for determining a basis over any A-ROS by se-
lecting/discarding vectors from a superset basis. However, two dis-
advantages arise which limit the practical applications: as the fil-
ter length increases (1) there are more stringent constraints on the
possible supports that may be represented and (2) the resulting rep-
resentation becomes increasingly ill-conditioned. In [1] we also
briefly described how relaxing the polynomial accuracy property
may enable an algorithm that overcomes these disadvantages.

4.1. Algorithm to Select a Basis/Solve the Sampling Problem

In this section, we present a simple algorithm for selecting a subset
of vectors from a superset basis which under certain conditions that
we develop provides a basis (solves the sampling problem) over
any arbitrary support [10]. We first describe the algorithm and then
analyze its properties and computational issues.

This algorithm establishes a 1-to-1 association between sam-
ples in the superset ROS and vectors in the superset basis; given
any arbitrary ROS, the associated vectors are selected as a (poten-
tial) basis. This approach provides the correct number of vectors
needed for a basis, and the association must guarantee that the se-
lected vectors are linearly independent over the A-ROS. A remark-
able feature of this approach is that for a very broad class of possi-
ble lowpass/highpass (LP/HP) filter pairs, there exists a simple as-
sociation that guarantees a basis for all possible arbitrary supports.
We next present an example of one possible association.

For simplicity, consider the 1-D problem and a 2-channel fil-
terbank with an appropriately chosen LP/HP filter pair. The ba-
sis vectors for the superset basis over l2(Z) are formed by all even



translates of the LP and HP filter impulse responses. For purpose
of illustration, consider typical odd-length, symmetric filters as are
commonly used in the image processing community, e.g. Daubechies
9/7-tap biorthogonal filters. These filters have natural center taps,
and the center taps of the LP and HP filters are located at adjacent
locations (not at the same location). Hence, the center of each of
the superset basis vectors is located at a different location. An ap-
pealing and simple 1-to-1 mapping between samples in the support
and vectors to select can be obtained by associating to each sample
the vector whose center tap is located at that sample. This associ-
ation strategy generalizes to a much larger class of filters, and also
extends trivially to 2-D or general M -D. Note that for a given filter
pair there may exist a number of possible associations that guaran-
tee a basis. One appealing and generally applicable association is
based on the largest filter taps since this (1) is natural, (2) leads to
a well-conditioned representation, and (3) simplifies the proof that
the association provides a basis.

4.2. Analysis of Algorithm

We next develop the required property for the simple association
method to provide a basis over any possible arbitrary support [10].
In particular, we consider the problem of selecting a basis to syn-
thesize the signal (the problem of selecting an analysis basis is anal-
ogous). Transform synthesis can be expressed as2
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where f represents the signal, T�1 is the transform synthesis ma-
trix whose columns contain the basis vectors, and c contains the
coefficients describing the linear combination of the basis vectors
that would recover the signal. For the purpose of illustration, and
without loss of generality, consider the case when the signal has an
arbitrary support given by �; �; and 
, and the samples outside the
support are denoted by don’t cares “�”.2
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Due to the�’s in f some rows of the matrix are useful while others
are not (signified by �’s) and can be discarded—only the portion
of each superset vector that overlaps the A-ROS is useful for repre-
senting the A-ROS signal. Collapsing the matrix and vector leads
to an underdetermined linear system of equations or an overcom-
plete representation.

" #
M�N

2
664

3
775

N�1

=

"
�
�



#
M�1

Since T�1 is nonsingular there exists at least one subset of M
columns that are linearly independent, and although one can de-
termine a subset by explicitly examining the vectors that would be

excessively complex. Our proposed association corresponds to a
simple algorithm for selecting M out of the N columns such that
the resulting M �M submatrix is nonsingular; this holds true for
any arbitrary support.

Our proposed association for selecting vectors (coupled with
appropriate indexing/shifting of the filter impulse responses) corre-
sponds to selecting columns with the same indices as the rows that
were retained. The resulting M �M submatrix is then a principal
submatrix of the original matrix.2
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Therefore, determining whether the proposed association provides
a basis over the given A-ROS is equivalent to determining whether
the resulting M �M principal submatrix is nonsingular. Further-
more, determining whether the proposed representation provides
a basis for all possible arbitrary supports is equivalent to deter-
mining whether all possible principal submatrices are nonsingu-
lar. This reformulation provides significant structure which greatly
facilitates further analysis. For instance, given an N � N matrix
A, if xTAx 6= 0 for all nonzero N � 1 vectors x, then all possible
principal submatrices of A are nonsingular.

We refer to a LP/HP filter pair as admissible (for a particular
dimension, e.g. 1-D or 2-D) if the proposed representation guar-
antees a basis for any arbitrary ROS (in that dimension). For 1-
D, we have developed a very simple and successful sufficient con-
dition on the filter taps such that if satisfied, the proposed repre-
sentation is guaranteed to provide a basis over any possible arbi-
trary support [10]. We examined a number of popular filters in-
cluding orthogonal filters (Daubechies 2-16 tap, Smith-Barnwell 8-
tap), pseudo-semiorthogonal filters (Simoncelli 9-tap), and linear-
phase biorthogonal filters (Daubechies 9/7-tap, Sweldens and Strang
“Binary” 9/7-tap, and Le Gall 3/5-tap). Every filter pair tested is
admissible in 1-D—the representation provides a basis for any ar-
bitrary 1-D support using any of the tested filters. Inadmissible fil-
ters can be constructed, however these are contrived cases and do
not correspond to conventional filters in the sense that they do not
have meaningful LP/HP frequency responses.

The 1-D analysis and conditions can be extended to 2-D and
general M -D, but a straightforward extension leads to relatively
narrow sufficient conditions, i.e. conditions that cover only a small
fraction of the filter sets that appear to be admissible. Admissibil-
ity can be examined by individually analyzing each filter pair and
exploiting its specific features [10]. To briefly summarize, of all
the filters tested, the Haar filters are the only filters that have been
shown to be inadmissible in 2-D, i.e. there exist 2-D A-ROS’s for
which the association with Haar filters does not provide a basis.
Theoretical considerations and empirical evidence strongly suggest
that a very broad class of filters are admissible, while a very small
and special class of filters (such as Haar) are not [10]. Details will
appear in a forthcoming paper.

4.3. Computational Issues

We consider the problem of analyzing (decomposing) and synthe-
sizing (reconstructing) an A-ROS signal with the proposed approach.
Specifically, we examine the case where a synthesis basis is selected,



as discussed in Section 3. The case where an analysis basis is se-
lected is similar, with the analysis and synthesis operations exchanged.
The complexity of this approach depends on three operations: (1)
selecting a basis given the signal’s support, (2) computing the coef-
ficient amplitudes to represent the signal with respect to the basis,
and (3) using the basis and coefficients to reconstruct the signal.

The proposed association provides an extremely simple method
for determining a basis over any A-ROS. For illustration, consider
1-D supports and a 2-channel filterbank. Shift the LP and HP filter
impulse responses so that their “chosen taps” occur at n = 0 and
n = 1, respectively, and express the output of the two-channel fil-
terbank in its transform representation (alternating LP and HP co-
efficients as opposed to collecting all the LP and all the HP together
as in the subband representation). With this organization the binary
(select/discard) mask for selecting vectors is exactly given by the
binary (within-A-ROS/outside-A-ROS) mask given by the signal’s
support. This simple relationship between selection and support
extends directly to 2-D and general M-D A-ROS signals.

Practically, it may be beneficial to use an iterative algorithm for
accurately estimating the coefficient amplitudes while requiring a
relatively small amount of complexity. This approach was moti-
vated by [3] where the coefficient amplitudes are estimated by com-
puting separable/fast transforms over a square. In the case of an
orthogonal transform over the square, we have orthogonal projec-
tions onto two convex sets within the superset space: (1) a subspace
given by the span of the selected vectors, and (2) an affine (trans-
lated) subspace corresponding to all possible extrapolations of the
A-ROS signal. Alternating (orthogonal) projections onto these two
convex sets is guaranteed to converge to an element in their union,
and since the sets intersect at a unique point, the iteration is guar-
anteed to converge to the solution.

The theory of POCS guarantees convergence for all admissible
orthogonal filters, but it does not apply for biorthogonal filters be-
cause they involve oblique (non-orthogonal, i.e. non-closest-point)
projections. However, empirical evidence shows that the iteration
does converge for typical admissible biorthogonal filters. Specif-
ically, the structure produced by the proposed association (selec-
tion/sampling) produces a converging sequence. Furthermore, the
convergence for typical biorthogonal filters is faster than for or-
thogonal filters. The fast convergence (depending on association,
filters, A-ROS, signal, and relaxation; approximately 10 dB/iteration)
suggests that sufficient accuracy for typical image processing ap-
plications may be achieved in a very small number of iterations.

The signal reconstruction is very simple; it requires determin-
ing the basis given the A-ROS, computing an inverse transform over
the superset basis, and extracting the signal as shown in Figure 3.

5. CONCLUDING REMARKS

The proposed approach provides a simple algorithm to determine a
basis (solve the sampling problem) for signals with completely ar-
bitrary supports. Specifically, for admissible filters, the approach
is applicable to any possible arbitrary support. Theoretical consid-
erations and empirical evidence strongly suggest that there exists a
very large class of admissible filters.

The approach provides good quality representations for objects
in an image, as shown in Figure 4. The representation also enables
a natural reconstruction of the A-ROS signal at different scales, and
at each scale the representation is critically sampled.

Polynomial accuracy is in general not preserved by the pro-
posed association. While fully preserving polynomial accuracy may

often not be important, it is important to minimize the DC-leakage
into the highpass subbands. The proposed approach may exhibit
undesirable DC-leakage into the boundary highpass coefficients de-
pending on the filters, specifics of the association, and A-ROS. The
filters and association can be designed to minimize this effect.

The representation appears to be stable to perturbations in the
signal. Specifically, a change in the A-ROS produces a change of
the same “size” in the basis. Also, the representation appears to be
well-conditioned to changes in the signal’s amplitude.

Computationally, one operation (analysis or synthesis) is sim-
ple and fast while the other is simple and relatively fast, requiring
a small number of iterations.

Overall, this wavelet-based representation appears promising
for representing signals with arbitrary supports, and in particular
the objects/regions within an image or video.

Figure 4: The wavelet representation of a 2-D A-ROS signal
where a synthesis basis was selected and using Daubechies 9/7-tap
biorthogonal filters. To aid in interpretation, the lowpass subband
has been attenuated and the other subbands have been offset to gray.

6. REFERENCES

[1] J. Apostolopoulos and J. Lim, “Transform/subband representations
for signals with arbitrarily shaped regions of support,” in In-
ter. Conf. Acoustics, Speech and Signal Processing, April 1997.

[2] A. Kaup and T. Aach, “A new approach towards description of arbi-
trarily shaped image segments,” IEEE Inter. Workshop on Intell. Sig.
Proc. Com. Sys., pp. 543–553, Mar. 1992.

[3] H. Chen, M. Civanlar, and B. Haskell, “A block transform coder
for arbitrarily shaped image segments,” Inter. Conf. on Image Proc.,
vol. 1, pp. 85–89, Nov. 1994.

[4] M. Gilge, T. Engelhardt, and R. Mehlan, “Coding of arbitrarily
shaped image segments based on a generalized orthogonal trans-
form,” Signal Processing: Image Comm., vol. 1, pp. 153–180, 1989.
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