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ABSTRACT of F. Here\(-) denotes the Lebesgue measure. We will frequently

We consider the problem of periodic nonuniform sampling of a USex(/; #) to denote the indicator function of a skt

multiband signal and its reconstruction from the samples. We de- 1 %
rive the conditions for exact reconstruction and find an explicit X(fi M) = { 0 fe iy
reconstruction formula. Key features of this method are that the g

sampling rate can be made arbitrarily close to the minimum (Lan-

dau) rate and that it can handle classes of multiband signals that are 2. MULTICOSET SAMPLING

not packable. We compute various bounds on the aliasing error due

to mismodeling the spectral support and examine the performanceLet(t) € B(F). We assume with no loss of generality that=
in the presence of additive white sample noise. Finally we provide 0 andb, = +, the Nyquist rate for:(¢). We first pick a suitable

optimal designs for the reconstruction system. integer. > 0 and then sample the input sigmadnuniformlyat
the instant$ = (nL +¢;)T for1 <1 < pandn € Z where{c;}
1. INTRODUCTION arep distinct integers contained in the set:

A
The use of nonuniform sampling for efficiently representating a £=40,1,..., L &1}

multiband signal has been well studied by various authors [1, 2, 3,
4]. The general case of interest, illustrated in fig. 1(a), is when the
structure ofF (the spectral support of the signal) is such that it is
not packablei.e.,

Foragiver;, the setof sampling instants= (nL+c;)T, n € Z
has uniform intersample spacing equaltd. We call this the-th
active cosetWe shall refer to the sét= {c; : 1 < i < p} asthe
sampling patterrand the integef. as theperiod of the pattern.
inf{>0:FN(nd®F)=0, VYn#0}=\[F]) Now consider the. discrete-time sequences defined below:

whered is the translation operator definedé&ag F 2 {6+ 71: A .
f € F}. In other words, the Nyquist rate for samplin¢t) ban- #(nT) = (1) Z dne(Lj+1), 0<sislel
dlimited to F is equal to the total width of the spectral span of
F, and sampling uniformly at any lower rate would cause aliasing. |t is clear that the sequeneg.,() contains the samples of thie
One of the most important advantages of nonuniform sampling is th active coset with samples separatedy 1 interleaving zeros.
that samplingz(t) at an average rate arbitrarily close to the Lan- |t is straigthforward to compute the discrete-time Fourier trans-
dau minimum rate, will generally guarantee exact reconstruction form of () using the Poisson summation formula.
of z(t) from its samples [3, 4].

Our analysis explicitly addresses the schenuegested in [4]

FERRS

[ere]

(apparently first proposed by [2]) but applies to any of thdtimu Xp(e”?™hy = Z wpy(nT) exp(&g2mn fT)
coset periodic sampling schemes. n=—oco
L—1
_ 1 r 127rl
1.1. SOME DEFINITIONS = 77 Z_;X (f + LT) exp ( 7 )(2)

The class of continuous complex ttilband signals of finite energy
with spectral supporf (consisting of a finite union of bounded It follows from (2) that for any- € Z
intervals), is denoted by

ir

> Xp(e*HEDT) = 27 Xy (27T ®)
B(F) = H{e() e LI(R)NC(R): X(f)=0, f¢F}
" Therefore it suffices to examing; (e’>™/T) for f € [0, )
F = U[a,‘,b,‘), ap <b <...<an <bp (1)
=1 127rl

L—-1
1
Xl(6J2TrfT) = — Xr(f) exp ( ) (4)
whereX (f) = [ (t) exp(&y2n ft)dtis the the Fourier trans- Lr TZ:; L

form of z(t). We let[F] = [a1, bn ), and denote thepectral span

where A r
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In other wordsX,-( f) is ther-th “spectral component” of the in-
put (corresponding to the range of frequencigs < f < t1)
shifted to the origin. Denoting the inverse Fourier transform of
X-(f) by z,(t), we observe that

#(t) = Z rr(t)exp (2710) )

We will use (7) and (3) later in deriving the reconstruction equa-
tions. We shallnowlet =¢;, : =1,2,...,pin (4) to get
)X, seF

- IT Z (
®)

This is the main equation relating the spectral compon&nty)

127Ccir
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Xpeg(e”?™

to the information contained in the observed samples. Note that

X((e”*™ 7y in the intervalFy contains relevant about the sam-
ples becaus&|.,j(e’*™/")e’*>" /" is periodic with periodA-
Reconstruction of the original signa(¢) is achieved if we recover
its spectral componen{s:(¢)}.

3. RECONSTRUCTION

Our primary objective is to invert the set of linear equations (8) to
obtainX,-(f). The recovery of:(¢) is then essentially an applica-
tion of (7). Notice that with no further assumptions about the class

of input signals, (8) cannot be solved because there are fewer equa-

tions (p) than unknown variabledy for eachf € F,. For a given
sampling patterie’, a sufficient condition for solving (8) is th&t
be chosen wisely and that at any frequelficg F,, no more than
p of the quantitie X (f)} for r € £ be nonzero. More specif-
ically, we will show thatz(t) € B(F) can be reconstructed from
the samples if the indicator function #f satisfies

L—1

Sx(f+4m7)<n sem

r=0

)

and if C is “universal” (as defined later). Our focus in this section
will be the exact reconstruction ef(t) € B(F) whenF satisfies
(9). The analogous problem for real signals has been considere
by Herley and Wong [4] who did not, however, provide an explicit
reconstruction formula. We shall derive the reconstruction equa-
tions formally.

Let F be as in (1) witha; = 0 andb,, =

+. Consider the
finite set
LTb; |

o)

where |- | is the floor function. Repeated values are listed only
once inl". Let{v,,} be theM < 2n distinct elements of ar-
ranged in increasing order Then = 0 sincea; = 0. Addi-
tionally, we defineyM+1 L Then the collection of intervals

(G} o

LT"*

Gm = [Ym;Ym+1), 1<m <M
clearly partitions the sef;. The importance of the above con-
structions is clarified in the following theorem.

Theorem 1 Foreachr € £andm € {1,2,...,
x(f + £ F) is constant over the intervgh,, .

M} the function

The theorem states that each of the “subcefls® G, (i.e. trans-
lates o0fG,,) is either fully contained ir¥ of disjoint from it. This
interpretation of the theorem motivates the following definition of
setsk,, and their complements for € {1,2,..., M}.

/cmé{reﬁ L 0Gm

LT
We can express these sets in terms of their element$,as=

{bm(D) 1 <1 < g} andKp = {kn(l) 1 1 <1< L Sgm}

wheregq,, is the number of elements iK,,. In view of theorem
1, we see that the left-hand side of (9) equgiswherem is the
unique index (for eaclf € F,) such thatf € G,,. Therefore (9)
now reduces to

c ]—"} Ko = L\Km  (10)

gn <p, 1<m <M 11)
Fig. 1 illustrates the entire process of construction of all the rel-
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Figure 1: (a) Indicator function of the spectral support of span
+ = 5 (b) Number of overlaps (fof. = 5) which is constant on
each of the four set§,, (c) The active spectral subcells. For each
m, the translates df,, are shown in the same color.

devant sets. Next we relate these spectral components to the data

samples. We define thex 1 data matrixy(f) as
[y(£)], = TVL Xy (e”77)

This matrix clearly contains all the information presentin the sam-
ples taken nonuniformly. For each, we define matriced\,,
B, xh (f) andx;, (f) (0f sizesp X gm, p X (L €Gm), gm X 1,

(L ©qm) x 1 respectively) as follows:

exp (]27‘rc,£€m ! )

(12)

1

lh = &= -
[Bml, = —zexp (umf’n l ) (13)
(D = Xy (NX(f59m)
(Nl = Xi,o(Hx(f;9m)

A,, andB,, are submatrices of thé x L. DFT matrix and the
quantitiesx;\, (f) andx;, (f) determine the “in-band” and “out-
of-band” portions of the spectrudd (f). Evidentlyz,,(f) = 0
whenever:(t) € B(F). However, whenx(t) ¢ B(F), z.,(f) #
0, leading to aliasing. Therefore (8), (12) and (13) yield

Y(f) = Anxh(f) + Bmxin(f), VfE€Gm

(14)



for eachm. Suppose:(t) € B(F). Then it is clear thak, ( f)
can be recovered from( f) if and only if A, has full rank. This
imposes a mild “universality” @endition on the sampling pattern

[3].

Definition 1 A patternC = {ci,...,¢c,} is said to be(p, q)-
universalif every selection of < p distinct columns of the matrix

e (254)]

is a linearly independent set. A pattern is simphyjversalif it is
(p, p)-universal.

(15)

Note that a(p, ¢)-universal pattert€ is (p, r)-universal for each

r < q. The “bunched” sampling patteth= {0,1,...,p &1} is

an example of a universal pattern (for arbitrdrybecause any set
of p columns of (15) would form a Vandermonde matrix. Equa-
tion (11) andp, ¢')-universality ofC (whereq’ = max, ¢,) are
sufficient for A,,, to have full column rank for each. we will

4. ERROR BOUNDS

Suppose the input(t) ¢ B(F) then the signat(¢) reconstructed
using (19) would be in error because the transformation matrix in
(18) will not equal the identity matrix in general. For example,
this would happen if, in the system design, we choose to ignore
certain frequencies that contain negligible signal energy in favor
of having a smaller spectral suppdft In this section we obtain
bounds on the aliasing erreft) = &(t) <« (t) resulting from an
underestimation of the spectral support.

In the following analysis we will assume, for simplicity, that
z(t) € B([F]). In other words we assume that the spectral span
[F]is correctly specified, but the multiband structure to whi¢h
is band-limited within F] may be misspecified.

4.1. RECONSTRUCTIONERROR

We denote the aliasing error ¢) = #(t) © (). Then its
spectral componentss, (1) = xZ(t) ©xZ (t) can be obtained

assume throughout that this is the case. We can now reconstructsing (18)

the spectral components of the inpﬁttﬂ(f)
xi£ (f), using the following formula

[ %5 (f) ] _ [ ARy
Cnm

defined similarly as
s 16
<= (f) (16)

for1 < m < M, whereA"” andC,, (sizesqn x p and(L <
gm) X p respectively) are (nonunique) matrices satisfying

] y()x(f;Gm)

A™A, =1 and CnA,, =0 (17)

for eachm. A is guaranteed to exist by choice of a ga®d
while C,,, exists trivially. Equations (14), (16) and (17) yield

(¢ ]

xm(f)

We have perfect reconstruction whef},(f) = 0 & z(¢) €
B(F). One of the problems we will consider is picking “good”
matricesA ;" andC,, that make the transformation matrix in (18)

ANB,,

C.B, ] (18)

as close to the identity matrix as possible. This is important be-

cause we want to minimize aliasing errors wheit) ¢ B(F).

These equations specify all the information required to reconstruct

the spectrumX (f) on all its spectral subcells. We now present
the interpolation formula fog(t) € B(F) which is obtained by
converting (16) to the time domain

B I

=1 jEZ

(ci + Lj)T)pi(t ©(ci + Ly)T) (29)

J2Trczk£n(l)

where¢; (t) is the inverse Fourier transform &f ( f),
TVLIAY e

Oi(f) = { TVI[C

Each of the filtersP;(f), 1 < ¢ < p has a piecewise constant
frequency response.

The reconstruction scheme is illustrated in fig. ®.(z) is a
digital filter whose impulse resonse{g(nT)}. The filters used

fet=lgg,

Em (1) Z
, fetlgg,

c
g2m
m];€ K

are ideal. We ignore here the issues involved in their approximate
realization and concentrate instead on the aliasing errors due towhere|| - || » denotes the Frobenius norm ak@s,,) =

signal mismodelling.

eh(f) | _ A"B,, _
[ en(f) | = | CuBm o1 |1 (20
We define matriceS,,,, D,, andF,, for eachm as follows
D. | | A®B,
sz[ F,, ]_[CmBm@I] (22)

We provide the relevant bounds on the sup-norm and the 2-norm of
the aliasing erroe(t) without going into the details of the proof.

Theorem 2 Suppose(t) € B([F]) is sampled nonuniformly ac-
cording to a sampling patteré designed for the class of signals
B(F), the resulting aliasing erroe(t) satisfies

max|e(t)] < max S| / Xl (22)
¢ m [FI\F
[max ||, | 17" VEou < llello < max [Smll, vVEou  (23)

where|| - ||, denotes the maximum column sum norm and

b= [ IX(OPa
[FI\NF

The bounds in (23) are sharp but (22) may not be sharp.

(24)

4.2. PERFORMANCE IN THEPRESENCE OFNOISE

Finally we consider the effect of additive white sample noise rep-
resenting, for example, quantization error. The sampled signal can
be modelled as(n1") = x(nT') + w(nT) wherew(n) is a noise
process withE[w(mT)w(nT)] = o?6(m &n) andx(t) is the
actual signal we would like to be sampling. The corresponding
output noise power for the system is easy to calculate. We find
that the average power of the (nonstationary) output noise is

M
(Bla(O))e =T > AGn) (1AW F + ICulF)  (25)

m=1

(Ym+1 &
¥m) is the length 0G.,,.



Figure 2: Multicoset sampling and reconstruction. The block “I” is an ideal sinc interpolator.

5. OPTIMIZING THE RECONSTRUCTION PROCESS The solutionC, = 0 andA* = AT is straightfowrard to verify.
Further the minimum value of the objective function (31) is

We will now examine the problem of optimial reconstruction. For
each fixed indexn, the multiplying constants in thepper bounds ||AT lr = \/tr((A*A)~1) (32)
(22) and (23) are related to the 1- and 2-norms, respectively, of
the matrixS,, in (21). We will fix the indexm and drop it ev-
erywhere from now on, for readability. Given sampling pattérn
and a spectral index sét, our objective is to find matricea™" The relevant quantity to minimize in order to obtain the testnd
andC satisfying (17) that minimize the norm 8fdefined in (21), in (22) is the 1-norm of the matri® defined in (21). The problem
where “norm” means eithéj- ||> or|| - ||1. The other possibilityis  of choosing valid matriceA™ andC in order to minimiz¢g|S||.,
to minimize the output noise power. Equation (25) reveals that we unlike the spectral or Frobenius normsSfcannot be solved an-

5.3. MINIMIZING THE PEAK ALIASING ERROR

need to minimize the quantity alytically. We resort to numerical methods instead.
IA™ 1% + ICIl% (26) , A B
) min (33)
over all valid matriceA™" andC. anv.c ||| CB el

Note that ifp = g, the matrixA is square and hencke™ =
A~! andC = 0 are the only valid matrices. Therefore, the re- We eliminate the constraint (17) by parametrizia§* andC as
construction system only needs to be optimized when q. Let A™ = AT+ X, P andC = X, P whereP = (I &£AA") isthe
this be the case in the rest of the section. The other point to note isleast-squares projection operator onto the null spack™f The
that the optimization needs to be carried out for each value of thematrix X, is ag x p andX, (L <¢) x p. We can now rewrite

indexm (the subscript we have chosen to omit). (33) in an unconstrained form as
5.1. MINIMIZING THE ALIASING ERRORENERGY m)én IS0 + XFls (34)

The problem of minimizing the spectral norm®fefined in (21)

_ |A'B
admits a simple analytic solution: whereSo = { } F=PBandX = [X2]'

] It turns out that the optimization problem (34) is hard to solve
Theorem 3 Let([A | B]lbe ap x L submatrix of thel, x L DFT even numerically, even though it involves the minimization of a
matrix W, [Wm, = —= exp(*z=mn), with possible rearrange-  ¢onvex function. Solving it directly is difficult because the objec-
ments of columns. Suppadehas full column ranky < p. Then  tive function is nondifferentiable. Howeverdbeslend itself to an
the minimization approximate linear program formulation. In practice, an approxi-

invg mate solution is generally sufficient.
27)

[CB (:)I] H (

min ||S]|z = min

. . 6. REFERENCES
performed over all matriceA™ and C that satisfyA"™ A =1

andCA = 0, has the solution [1] K. Cheungand R. Marks, “Image sampling below the Nyquist
. , e density without aliasing,J. Opt. Soc. Am. Avol. 7, pp. 92—
A = Al=(A*A)7'A (28) 105, 1990.
C, = B*(IsAAh (29) [2] R. E. Kahn and B. Liu, “Sampling representations and the op-

timum reconstruction of signalslEEE Trans. Info. Theory
vol. 11, pp. 339-347, 1965.

ISll> = { Amax((A*A)71), p< L (30) [3] P. Feng and Y. Bresler, “Spectrum-blind minimum-rate sam-
0, p=1L pling and reconstruction of multiband signals,”Rnoc. IEEE
Int. Conf. Acoust. Speech, Sig. ProfAtlanta, GA), IEEE,
5.2. MINIMIZING THE OUTPUT NOISE POWER May 1996.

We seek the optimal matrices™ andC that satisfyA®"™* A = I [4] C. Herley and P. W. Wong, “Minimum rate sampling of signals

andCA = 0, in order to minimize the quantity (26) with arbitrary frequency support,” iProc. IEEE Int. Conf.
. Image Proc, (Lausanne, Switzerland), IEEE, Sept. 1996
min_([A™[[F +[[Cl[F) (31)

and the corresponding minumum value is



